ترغب بنشر مسار تعليمي؟ اضغط هنا

Multidimensional supernova simulations with approximative neutrino transport. II. Convection and the advective-acoustic cycle in the supernova core

48   0   0.0 ( 0 )
 نشر من قبل Hans-Thomas Janka
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L. Scheck




اسأل ChatGPT حول البحث

By 2D hydrodynamic simulations including a detailed equation of state and neutrino transport, we investigate the interplay between different non-radial hydrodynamic instabilities that play a role during the postbounce accretion phase of collapsing stellar cores. The convective mode of instability, which is driven by negative entropy gradients caused by neutrino heating or by time variations of the shock strength, can be identified clearly by the development of typical Rayleigh-Taylor mushrooms. However, in cases where the gas in the postshock region is rapidly advected towards the gain radius, the growth of such a buoyancy instability can be suppressed. In such a situation the shocked flow nevertheless can develop non-radial asymmetry with an oscillatory growth of the amplitude. This phenomenon has been termed ``standing accretion shock instability (SASI). It is shown here that the SASI oscillations can trigger convective instability and like the latter they lead to an increase of the average shock radius and of the mass in the gain layer. Both hydrodynamic instabilities in combination stretch the advection time of matter through the neutrino-heating layer and thus enhance the neutrino energy deposition in support of the neutrino-driven explosion mechanism. A rapidly contracting and more compact nascent NS turns out to be favorable for explosions, because the accretion luminosity and neutrino heating are larger and the growth rate of the SASI is higher. Moreover, we show that the oscillation period of the SASI and a variety of other features in our simulations agree with estimates for the advective-acoustic cycle (AAC), in which perturbations are carried by the accretion flow from the shock to the neutron star and pressure waves close an amplifying global feedback loop. (abridged)

قيم البحث

اقرأ أيضاً

We present multi-dimensional core-collapse supernova simulations using the Isotropic Diffusion Source Approximation (IDSA) for the neutrino transport and a modified potential for general relativity in two different supernova codes: FLASH and ELEPHANT . Due to the complexity of the core-collapse supernova explosion mechanism, simulations require not only high-performance computers and the exploitation of GPUs, but also sophisticated approximations to capture the essential microphysics. We demonstrate that the IDSA is an elegant and efficient neutrino radiation transfer scheme, which is portable to multiple hydrodynamics codes and fast enough to investigate long-term evolutions in two and three dimensions. Simulations with a 40 solar mass progenitor are presented in both FLASH (1D and 2D) and ELEPHANT (3D) as an extreme test condition. It is found that the black hole formation time is delayed in multiple dimensions and we argue that the strong standing accretion shock instability before black hole formation will lead to strong gravitational waves.
We investigate neutrino-driven convection in core collapse supernovae and its ramifications for the explosion mechanism. We begin with an ``optimistic 15 solar mass precollapse model, which is representative of the class of stars with compact iron co res. This model is evolved through core collapse and bounce in one dimension using multigroup (neutrino-energy--dependent) flux-limited diffusion (MGFLD) neutrino transport and Lagrangian hydrodynamics, providing realistic initial conditions for the postbounce convection and evolution. Our two-dimensional simulation begins at 106 ms after bounce at a time when there is a well-developed gain region, and proceeds for 400 ms. We couple two-dimensional (PPM) hydrodynamics to one-dimensional MGFLD neutrino transport. At 225 ms after bounce we see large-scale convection behind the shock, characterized by high-entropy, mushroom-like, expanding upflows and dense, low-entropy, finger-like downflows. The upflows reach the shock and distort it from sphericity. The radial convection velocities become supersonic just below the shock, reaching magnitudes in excess of 10^9 cm/sec. Eventually, however, the shock recedes to smaller radii, and at about 500 ms after bounce there is no evidence in our simulation of an explosion or of a developing explosion. Failure in our ``optimistic 15 solar mass Newtonian model leads us to conclude that it is unlikely, at least in our approximation, that neutrino-driven convection will lead to explosions for more massive stars with fatter iron cores or in cases in which general relativity is included.
81 - A. Mezzacappa 2000
In this paper, we present results from a simulation of stellar core collapse, bounce, and postbounce evolution with Boltzmann neutrino transport. We motivate the development of our Boltzmann solver in light of the sensitivity of the neutrino-heating core collapse supernova paradigm to details in the neutrino transport, particularly near the neutrinospheres, where the neutrinos are neither diffusing nor free streaming and a kinetic description is necessary, and in light of the mixed outcomes and transport approximations used in all prior supernova models in both one and two dimensions. We discuss the implications of our findings for the supernova mechanism and future supernova research. We also present the results of a Boltzmann transport prediction of the early neutrino light curves in the model included here.
Accurate neutrino transport has been built into spherically symmetric simulations of stellar core collapse and postbounce evolution. The results of such simulations agree that spherically symmetric models with standard microphysical input fail to exp lode by the delayed, neutrino-driven mechanism. Independent groups implemented fundamentally different numerical methods to tackle the Boltzmann neutrino transport equation. Here we present a direct and detailed comparison of such neutrino radiation-hydrodynamical simulations for two codes, Agile-Boltztran of the Oak Ridge-Basel group and Vertex of the Garching group. The former solves the Boltzmann equation directly by an implicit, general relativistic discrete angle method on the adaptive grid of a conservative implicit hydrodynamics code with second-order TVD advection. In contrast, the latter couples a variable Eddington factor technique with an explicit, moving-grid, conservative high-order Riemann solver with important relativistic effects treated by an effective gravitational potential. The presented study is meant to test both neutrino radiation-hydrodynamics implementations and to provide a data basis for comparisons and verifications of supernova codes to be developed in the future. Results are discussed for simulations of the core collapse and post-bounce evolution of a 13 solar mass star with Newtonian gravity and a 15 solar mass star with relativistic gravity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا