ﻻ يوجد ملخص باللغة العربية
We have conducted a high-resolution ``3D imaging survey of the CO(1--0), HCN(1--0), and HCO$^+$(1--0) lines toward the central a few kpc regions of the Seyfert and starburst galaxies in the local universe using the Nobeyama Millimeter Array. We detected luminous HCN(1--0) emissions toward a considerable fraction of these Seyfert galaxies (10 of 12 in our sub-sample), which indicated that some of these Seyfert galaxies, such as NGC 3079, NGC 3227, NGC 4051, NGC 6764, and NGC 7479, are indeed accompanied with compact nuclear starburst, given the tight correlation between the HCN(1--0) luminosity and the star formation rate among star-forming galaxies. However, we suggest that the elevated HCN(1--0) emission from some of these Seyfert galaxies, including NGC 1068, NGC 1097, NGC 5033, and NGC 5194, does not signify the presence of massive starbursts there. This is because these Seyfert nuclei show abnormally high HCN(1--0)/HCO$^+$(1--0) ratios (2--3), which were never observed in the starburst nuclei in our sample. This could be attributed to the overabundance of HCN molecules in the X-ray dominated regions (XDRs) at the centers of these Seyfert galaxies.
Negative feedback from accretion onto super-massive black holes (SMBHs), that is to remove gas and suppress star formation in galaxies, has been widely suggested. However, for Seyfert galaxies which harbor less active, moderately accreting SMBHs in t
We report the detection of the 3.3 mu Polycyclic Aromatic Hydrocarbon (PAH) feature in two Seyfert 1 galaxies - NGC 3227 and Mrk 766, and one QSO - Mrk 478, observed with SpeX at IRTF at a spectral resolution not previously attained for this type of
We aim to study the properties of the dense molecular gas towards the inner few 100 pc of four nearby starburst galaxies dominated both by photo dissociation regions (M82) and large-scale shocks (NGC253, IC342 and Maffei2), and to relate the chemical
A handful of nearby supernovae (SNe) with visual extinctions of a few magnitudes have recently been discovered. However, an undiscovered population of much more highly extinguished (A(V) > 10) core-collapse supernovae (CCSNe) is likely to exist in th
Context: The morphology of massive star formation in the central regions of galaxies is an important tracer of the dynamical processes that govern the evolution of disk, bulge, and nuclear activity. Aims: We present optical imaging of the central reg