ترغب بنشر مسار تعليمي؟ اضغط هنا

Mildly Suppressed Star Formation in Central Regions of MaNGA Seyfert Galaxies

332   0   0.0 ( 0 )
 نشر من قبل Longji Bing
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Negative feedback from accretion onto super-massive black holes (SMBHs), that is to remove gas and suppress star formation in galaxies, has been widely suggested. However, for Seyfert galaxies which harbor less active, moderately accreting SMBHs in the local universe, the feedback capability of their black hole activity is elusive. We present spatially-resolved H$alpha$ measurements to trace ongoing star formation in Seyfert galaxies and compare their specific star formation rate with a sample of star-forming galaxies whose global galaxy properties are controlled to be the same as the Seyferts. From the comparison we find that the star formation rates within central kpc of Seyfert galaxies are mildly suppressed as compared to the matched normal star forming galaxies. This suggests that the feedback of moderate SMBH accretion could, to some extent, regulate the ongoing star formation in these intermediate to late type galaxies under secular evolution.



قيم البحث

اقرأ أيضاً

67 - Lin Lin , Cheng Li , Cheng Du 2020
We analyse two-dimensional maps and radial profiles of EW(H$alpha$), EW(H$delta_A$), and D$_n$(4000) of low-redshift galaxies using integral field spectroscopy from the MaNGA survey. Out of $approx1400$ nearly face-on late-type galaxies with a redshi ft $z<0.05$, we identify 121 turnover galaxies that each have a central upturn in EW(H$alpha$), EW(H$delta_A$) and/or a central drop in D$_n$(4000), indicative of ongoing/recent star formation. The turnover features are found mostly in galaxies with a stellar mass above $sim$10$^{10}$ M$_{odot}$ and NUV-$r$ colour less than $approx5$. The majority of the turnover galaxies are barred, with a bar fraction of 89$pm$3%. Furthermore, for barred galaxies the radius of the central turnover region is found to tightly correlate with one third of the bar length. Comparing the observed and the inward extrapolated star formation rate surface density, we estimate that the central SFR have been enhanced by an order of magnitude. Conversely, only half of the barred galaxies in our sample have a central turnover feature, implying that the presence of a bar is not sufficient to lead to a central SF enhancement. We further examined the SF enhancement in paired galaxies, as well as the local environment, finding no relation. This implies that environment is not a driving factor for central SF enhancement in our sample. Our results reinforce both previous findings and theoretical expectation that galactic bars play a crucial role in the secular evolution of galaxies by driving gas inflow and enhancing the star formation and bulge growth in the center.
79 - J. H. Knapen 2005
Context: The morphology of massive star formation in the central regions of galaxies is an important tracer of the dynamical processes that govern the evolution of disk, bulge, and nuclear activity. Aims: We present optical imaging of the central reg ions of a sample of 73 spiral galaxies in the H alpha line and in optical broad bands, and derive information on the morphology of massive star formation. Methods: We obtained images with the William Herschel Telescope, mostly at a spatial resolution of below one second of arc. For most galaxies, no H alpha imaging is available in the literature. We outline the observing and data reduction procedures, list basic properties, and present the I-band and continuum-subtracted H alpha images. We classify the morphology of the nuclear and circumnuclear H alpha emission and explore trends with host galaxy parameters. Results: We confirm that late-type galaxies have a patchy circumnuclear appearance in H alpha, and that nuclear rings occur primarily in spiral types Sa-Sbc. We identify a number of previously unknown nuclear rings, and confirm that nuclear rings are predominantly hosted by barred galaxies. Conclusions: Other than in stimulating nuclear rings, bars do not influence the relative strength of the nuclear H alpha peak, nor the circumnuclear H alpha morphology. Even though our selection criteria led to an over-abundance of galaxies with close massive companions, we do not find any significant influence of the presence or absence of a close companion on the relative strength of the nuclear H alpha peak, nor on the H alpha morphology around the nucleus.
Bars inhabit the majority of local-Universe disk galaxies and may be important drivers of galaxy evolution through the redistribution of gas and angular momentum within disks. We investigate the star formation and gas properties of bars in galaxies s panning a wide range of masses, environments, and star formation rates using the MaNGA galaxy survey. Using a robustly-defined sample of 684 barred galaxies, we find that fractional (or scaled) bar length correlates with the hosts offset from the star-formation main sequence. Considering the morphology of the H$alpha$ emission we separate barred galaxies into different categories, including barred, ringed, and central configurations, together with H$alpha$ detected at the ends of a bar. We find that only low-mass galaxies host star formation along their bars, and that this is located predominantly at the leading edge of the bar itself. Our results are supported by recent simulations of massive galaxies, which show that the position of star formation within a bar is regulated by a combination of shear forces, turbulence and gas flows. We conclude that the physical properties of a bar are mostly governed by the existing stellar mass of the host galaxy, but that they also play an important role in the galaxys ongoing star formation.
We consider the circumnuclear regions of MaNGA galaxies. The spectra are classified as AGN-like, HII-region-like (or SF-like), and intermediate (INT) spectra according to their positions on the BPT diagram. There are the following four configurations of the radiation distributions in the circumnuclear regions: 1) AGN+INT, the innermost region of the AGN-like radiation is surrounded by a ring of radiation of the intermediate type; 2) INT, the central area of radiation of the intermediate type; 3) SF+INT, the inner region of the HII-region-like radiation is surrounded by a ring of radiation of the intermediate type; and 4) SF, the HII-region-like radiation only. The LINERS of configurations 1 and 2 are examined. The spaxel spectra of the LINERs form a sequences on the BPT diagram. The line ratios change smoothly with radius, from AGN-like at the center to HII-region-like at larger distances. This is in agreement with the paradigm that the LINERs are excited by AGN activity. The AGN and INT radiation in the circumnuclear region is accompanied by an enhanced gas velocity dispersion, s_g. The radius of the area of the AGN and INT radiation is similar to the radius of the area with enhanced s_g, and the central s_g,c correlates with the luminosity of the AGN+INT area. We assume that the gas velocity dispersion can serve as an indicator of the AGN activity. The values of s_g,c for the SF-type centers partly overlap with those of the AGN-type centers. We find that there is a demarcation line between the positions of the AGN-type and SF-type objects on the s_g,c - central Halpha surface brightness diagram.
We use data from 1222 late-type star-forming galaxies in the SDSS IV MaNGA survey to identify regions in which the gas-phase metallicity is anomalously-low compared to expectations from the tight empirical relation between metallicity and stellar sur face mass-density at a given stellar mass. We find anomalously low metallicity (ALM) gas in 10% of the star-forming spaxels, and in 25% of the galaxies in the sample. The incidence rate of ALM gas increases strongly with both global and local measures of the specific star-formation rate, and is higher in lower mass galaxies and in the outer regions of galaxies. The incidence rate is also significantly higher in morphologically disturbed galaxies. We estimate that the lifetimes of the ALM regions are a few hundred Myr. We argue that the ALM gas has been delivered to its present location by a combination of interactions, mergers, and accretion from the halo, and that this infusion of gas stimulates star-formation. Given the estimated lifetime and duty cycle of such events, we estimate that the time-averaged accretion rate of ALM gas is similar to the star-formation rate in late type galaxies over the mass-range M$_* sim10^9$ to 10$^{10}$ M$_{odot}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا