ترغب بنشر مسار تعليمي؟ اضغط هنا

Raman spectra of L-leucine crystals

307   0   0.0 ( 0 )
 نشر من قبل Waldeci Paraguassu
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Single crystal samples of L-leucine, C6H13NO2, a fundamental aliphatic amino acid of the human body, have been studied by Raman spectroscopy at temperatures from 300 to 430 K over the spectral range from 50 to 3100 cm-1. A tentative assignment of all bands is given. For high temperatures, several modifications on the Raman spectra were observed at about 353 K, giving evidence that the L-leucine crystal undergoes a structural phase transition.

قيم البحث

اقرأ أيضاً

362 - G. P. De Sousa 2013
We present a Raman spectroscopy investigation of the vibrational properties of L-histidine crystals at low temperatures. The temperature dependence of the spectra show discontinuities at 165 K, which we identify with modifications in the bonds associ ated to both the NH3+ and CO2- motifs indicative of a conformational phase transition that changes the intermolecular bonds. Additional evidence of such a phase transition was provided by differential scanning calorimetry measurements, which identified an enthalpic anomaly at ~165 K.
Raman spectroscopy has been employed to distinguish between the Raman spectrum of pristine hydrogenated diamond like carbon (PHDLC) and that of electrochemically hydrogenated diamond like carbon (ECHDLC). The enhancement of the background photolumine scence (PL) in the Raman spectrum and broadening of PL spectrum of ECHDLC are identified to be due to increase of sp3 C-H density onto the PHDLC surface, during novel electrochemical process of hydrogenation of sp2 C=C into sp3 C-H.
74 - H. Sahin , S. Tongay , S. Horzum 2013
Typical Raman spectra of transition metal dichalcogenides (TMDs) display two prominent peaks, E2g and A1g, that are well separated from each other. We find that these modes are degenerate in bulk WSe2 yielding one single Raman peak. As the dimensiona lity is lowered, the observed peak splits in two as a result of broken degeneracy. In contrast to our experimental findings, our phonon dispersion calculations reveal that these modes remain degenerate independent of the number of layers. Interestingly, for minuscule biaxial strain the degeneracy is preserved but once the crystal symmetry is broken by uniaxial strain, the degeneracy is lifted. Our calculated phonon dispersion for uniaxially strained WSe2 shows a perfect match to the measured Raman spectrum which suggests that uniaxial strain exists in WSe2 flakes possibly induced during the sample preparation and/or as a result of interaction between WSe2 and the substrate. Furthermore, we find that WSe2 undergoes an indirect to direct bandgap transition from bulk to monolayers which is ubiquitous for semiconducting TMDs. These results not only allow us to understand the vibrational properties of WSe2 but also provides detailed insight to their physical properties.
We report crystal growth and Raman spectroscopy characterization of pure and mixed bulk topological insulators. The series comprises of both binary and ternary tetradymite topological insulators. We analyzed in detail the Raman peaks of vibrational m odes as out of plane Ag, and in plane Eg for both binary and ternary tetradymite topological insulators. Both out of plane Ag exhibit obvious atomic size dependent peak shifts and the effect is much lesser for the former than the latter. The situation is rather interesting for in plane Eg, which not only shows the shift but rather a broader hump like structure. The de convolution of the same show two clear peaks, which are understood in terms of the presence of separate in plane BiSe and BiTe modes in mixed tetradymite topological insulators. Summarily, various Raman modes of well-characterized pure and mixed topological insulator single crystals are reported and discussed in this article.
Cu$_2$ZnSnS$_4$ is an earth-abundant photovoltaic absorber material predicted to provide a sustainable solution for commercial solar applications. One of the main limitations restricting its commercialization is the issue of cation disorder. Raman sp ectroscopy has been a sought after technique to characterize disorder in CZTS while a clear consensus between theoretical and experimental results is yet to be achieved. In the present study, via the virtual crystal approximation, we take into account the progressive nature of Cu-Zn disorder in CZTS: we obtain the phonon frequencies at zone-center within the density functional perturbation theory formalism, and further compute the Raman spectra for the disordered phases, achieving a consensus between theory and experiment. These calculations confirm the presence of complete disorder in Cu-Zn 2$a$, 2$c$ and 2$d$ Wyckoff sites. They also show that the Raman intensities of two prominent $A$ phonon modes characterized by motion of S atoms, also known to be experimentally significant, play a key role in understanding the nature of disorder in CZTS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا