ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron-electron correlation in graphite

225   0   0.0 ( 0 )
 نشر من قبل Alexander Gruneis
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The full three dimensional dispersion of the pi-bands, Fermi velocities and effective masses are measured with angle resolved photoemission spectroscopy and compared to first-principles calculations. The band structure by density-functional theory strongly underestimates the slope of the bands and the trigonal warping effect. Including electron-electron calculation on the level of the GW approximation, however, yields remarkable agreement in the vicinity of the Fermi level. This demonstrates the breakdown of the independent electron picture in semi-metallic graphite and points towards a pronounced role of electron correlation for the interpretation of transport experiments and double-resonant Raman scattering for a wide range of carbon based materials.

قيم البحث

اقرأ أيضاً

338 - V. U. Nazarov , G. Vignale , 2008
The dynamical exchange-correlation kernel $f_{xc}$ of a non-uniform electron gas is an essential input for the time-dependent density functional theory of electronic systems. The long-wavelength behavior of this kernel is known to be of the form $f_{ xc}= alpha/q^2$ where $q$ is the wave vector and $alpha$ is a frequency-dependent coefficient. We show that in the limit of weak non-uniformity the coefficient $alpha$ has a simple and exact expression in terms of the ground-state density and the frequency-dependent kernel of a {it uniform} electron gas at the average density. We present an approximate evaluation of this expression for Si and discuss its implications for the theory of excitonic effects.
The interplay of electron-phonon (el-ph) and electron-electron (el-el) interactions in epitaxial graphene is studied by directly probing its electronic structure. We found a strong coupling of electrons to the soft part of the A1g phonon evident by a kink at 150+/-15 meV, while the coupling of electrons to another expected phonon E2g at 195 meV can only be barely detected. The possible role of the el-el interaction to account for the enhanced coupling of electrons to the A1g phonon, and the contribution of el-ph interaction to the linear imaginary part of the self energy at high binding energy are also discussed. Our results reveal the dominant role of the A1g phonon in the el-ph interaction in graphene, and highlight the important interplay of el-el and el-ph interactions in the self energy of graphene.
By combined top- and backgating, we explore the correlation of superconductivity with band filling and electron confinement at the LaAlO$_3$-SrTiO$_3$ interface. We find that the top- and backgate voltages have distinctly different effects on the sup erconducting critical temperature, implying that the confining potential well has a profound effect on superconductivity. We investigate the origin of this behavior by comparing the gate-dependence of $T_c$ to the corresponding evolution of the band filling with gate voltage. For several backgate voltages, we observe maximum $T_c$ to consistently coincide with a kink in tuning the band filling for high topgate voltage. Self-consistent Schrodinger-Poisson calculations relate this kink to a Lifshitz transition of the second $d_{xy}$ subband. These results establish a major role for confinement-induced subbands in the phase diagram of SrTiO$_3$ surface states, and establish gating as a means to control the relative energy of these states.
Ultrashort light pulses can selectively excite charges, spins and phonons in materials, providing a powerful approach for manipulating their properties. Here we use femtosecond laser pulses to coherently manipulate the electron and phonon distributio ns, and their couplings, in the charge density wave (CDW) material 1T-TaSe$_2$. After exciting the material with a short light pulse, spatial smearing of the electrons launches a coherent lattice breathing mode, which in turn modulates the electron temperature. This indicates a bi-directional energy exchange between the electrons and the strongly-coupled phonons. By tuning the laser excitation fluence, we can control the magnitude of the electron temperature modulation, from ~ 200 K in the case of weak excitation, to ~ 1000 K for strong laser excitation. This is accompanied by a switching of the dominant mechanism from anharmonic phonon-phonon coupling to coherent electron-phonon coupling, as manifested by a phase change of $pi$ in the electron temperature modulation. Our approach thus opens up possibilities for coherently manipulating the interactions and properties of quasi-2D and other quantum materials using light.
83 - J. C. Loudon 2012
Neutron diffraction has been used to investigate antiferromagnetism since 1949. Here we show that antiferromagnetic reflections can also be seen in transmission electron diffraction patterns from NiO. The diffraction patterns taken here came from reg ions as small as 10.5 nm and such patterns could be used to form an image of the antiferromagnetic structure with a nanometre resolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا