ترغب بنشر مسار تعليمي؟ اضغط هنا

Coupling of Magnetic Order, Ferroelectricity, and Lattice Strain in Multiferroic Rare Earth Manganites

165   0   0.0 ( 0 )
 نشر من قبل Bernd Lorenz
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Multiferroic rare earth manganites attracted recent attention because of the coexistence of different types of magnetic and ferroelectric orders resulting in complex phase diagrams and a wealth of physical phenomena. The coupling and mutual interference of the different orders and the large magnetoelectric effect observed in several compounds are of fundamental interest and bear the potential for future applications in which the dielectric (magnetic) properties can be modified by the onset of a magnetic (dielectric) transition or the application of a magnetic (electric) field. The physical mechanisms of the magnetoelectric effect and the origin of ferroelectric order at magnetic transitions have yet to be explored. We discuss multiferroic phenomena in the hexagonal HoMnO3 and show that the strong magneto-dielectric coupling is intimately related to the lattice strain induced by unusually large spin-phonon correlations.

قيم البحث

اقرأ أيضاً

194 - J. Liu , Y. Gallais , M-A. Measson 2018
We used Raman scattering to study the lattice and magnetic excitations in the hexagonal HoMnO3 single crystals. The E2 phonon mode at 237 cm-1 is affected by the magnetic order. This mode is related to the displacement of Mn and O ions in a-b plane a nd modulates the Mn-O-Mn bond angles in a-b plane and the in-plane Mn-Mn superexchange interaction. The mode at 269 cm-1 associated to the displacement of the apical Ho3+ ions along the c direction presents an abrupt change of slope at TN showing that the role of the rare earth ions can not be neglected in the magnetic transition. We have identified magnon and crystal field excitations. The temperature dependence of the magnetic excitations has been compared to the Mn and Ho moment and indicates that the exchange interaction pattern between Mn and Ho atoms drives the uniaxial anisotropy gap above the Mn-spin-rotation transition.
We study the mechanism of orbital-order melting observed at temperature T_OO in the series of rare-earth manganites. We find that many-body super-exchange yields a transition-temperature T_KK that decreases with decreasing rare-earth radius, and incr eases with pressure, opposite to the experimental T_OO. We show that the tetragonal crystal-field splitting reduces T_KK further increasing the discrepancies with experiments. This proves that super-exchange effects, although very efficient, in the light of the experimentally observed trends, play a minor role for the melting of orbital ordering in rare-earth manganites.
We have performed high resolution neutron diffraction and inelastic neutron scattering experiments in the frustrated multiferroic hexagonal compounds RMnO3 (R=Ho, Yb, Sc, Y), which provide evidence of a strong magneto-elastic coupling in the the whol e family. We can correlate the atomic positions, the type of magnetic structure and the nature of the spin waves whatever the R ion and temperature. The key parameter is the position of the Mn ions in the unit cell with respect to a critical threshold of 1/3, which determines the sign of the coupling between Mn triangular planes.
We have employed resonant x-ray magnetic scattering to specifically probe the magnetic order of the rare-earth ions in multiferroic $mathrm{TbMn_2O_5}$. Two energy resonances were observed, one originated from the E1-E1 dipolar transition and the oth er from the E2-E2 quadrupolar transition. These resonances directly probe the valence 5d band and the partially occupied 4f band, respectively. First, full polarization analysis, which is a measurement of the scattered polarization as a function of incident polarization, confirmed a spin polarization of the terbium valence states (probed by the E1-E1 transition) by the $mathrm{Mn^{4+}}$ spin density in the commensurate phase. Second, full polarization analysis data were collected in the low-temperature incommensurate and commensurate phases when tuned to the E2-E2 resonance. By employing a least-squares fitting procedure, the spin orientations of the terbium ion sublattice were refined.
The perovskite rare-earth titanates are model Mott insulators with magnetic ground states that are sensitive to structural distortions. These distortions couple strongly to the orbital degrees of freedom and, in principle, it should be possible to tu ne the superexchange and to manipulate the Curie temperature ($T_C$) with strain. We investigate the representative system (Y,La,Ca)TiO$_3$, which exhibits low crystallographic symmetry and no structural instabilities. From magnetic susceptibility measurements of $T_C$, we demonstrate direct, reversible and continuous control of ferromagnetism by influencing the TiO$_6$ octahedral tilts and rotations with uniaxial strain. The relative change in $T_C$ as a function of strain is well described by textit{ab initio} calculations, which provides detailed understanding of the complex interactions among structural, orbital and magnetic properties in these compounds. The demonstrated manipulation of octahedral distortions opens up far-reaching possibilities for investigations of electron-lattice coupling, competing ground states and magnetic quantum phase transitions in a wide range of quantum materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا