ترغب بنشر مسار تعليمي؟ اضغط هنا

3D Radiative Hydrodynamics for Disk Stability Simulations: A Proposed Testing Standard and New Results

58   0   0.0 ( 0 )
 نشر من قبل Aaron Boley
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent three-dimensional radiative hydrodynamics simulations of protoplanetary disks report disparate disk behaviors, and these differences involve the importance of convection to disk cooling, the dependence of disk cooling on metallicity, and the stability of disks against fragmentation and clump formation. To guarantee trustworthy results, a radiative physics algorithm must demonstrate the capability to handle both the high and low optical depth regimes. We develop a test suite that can be used to demonstrate an algorithms ability to relax to known analytic flux and temperature distributions, to follow a contracting slab, and to inhibit or permit convection appropriately. We then show that the radiative algorithm employed by Mejia (2004) and Boley et al. (2006) and the algorithm employed by Cai et al. (2006) and Cai et al. (2007, in prep.) pass these tests with reasonable accuracy. In addition, we discuss a new algorithm that couples flux-limited diffusion with vertical rays, we apply the test suite, and we discuss the results of evolving the Boley et al. (2006) disk with this new routine. Although the outcome is significantly different in detail with the new algorithm, we obtain the same qualitative answers. Our disk does not cool fast due to convection, and it is stable to fragmentation. We find an effective $alphaapprox 10^{-2}$. In addition, transport is dominated by low-order modes.


قيم البحث

اقرأ أيضاً

42 - C. G. Few , C. Dobbs , A. Pettitt 2016
We examine how three fundamentally different numerical hydrodynamics codes follow the evolution of an isothermal galactic disc with an external spiral potential. We compare an adaptive mesh refinement code (RAMSES), a smoothed particle hydrodynamics code (sphNG), and a volume-discretised meshless code (GIZMO). Using standard refinement criteria, we find that RAMSES produces a disc that is less vertically concentrated and does not reach such high densities as the sphNG or GIZMO runs. The gas surface density in the spiral arms increases at a lower rate for the RAMSES simulations compared to the other codes. There is also a greater degree of substructure in the sphNG and GIZMO runs and secondary spiral arms are more pronounced. By resolving the Jeans length with a greater number of grid cells we achieve more similar results to the Lagrangian codes used in this study. Other alterations to the refinement scheme (adding extra levels of refinement and refining based on local density gradients) are less successful in reducing the disparity between RAMSES and sphNG/GIZMO. Although more similar, sphNG displays different density distributions and vertical mass profiles to all modes of GIZMO (including the smoothed particle hydrodynamics version). This suggests differences also arise which are not intrinsic to the particular method but rather due to its implementation. The discrepancies between codes (in particular, the densities reached in the spiral arms) could potentially result in differences in the locations and timescales for gravitational collapse, and therefore impact star formation activity in more complex galaxy disc simulations.
111 - Peter B. Dobbie 2009
It is widely accepted that quasars and other active galactic nuclei (AGN) are powered by accretion of matter onto a central supermassive black hole. While numerical simulations have demonstrated the importance of magnetic fields in generating the tur bulence believed necessary for accretion, so far they have not produced the high mass accretion rates required to explain the most powerful sources. We describe new global 3D simulations we are developing to assess the importance of radiation and non-ideal MHD in generating magnetized outflows that can enhance the overall rates of angular momentum transport and mass accretion.
We have adapted the anelastic spectral code of Barranco & Marcus (2006) to simulate a turbulent convective layer with the intention of studying the effectiveness of turbulent eddies in dissipating external shear (e.g. tides). We derive the anelastic equations, show the time integration scheme we use to evolve these equations and present the tests we ran to confirm that our code does what we expect. Further we apply a perturbative approach to find an approximate scaling of the effective eddy viscosity with frequency, and find that it is in general agreement with an estimate obtained by applying the same procedure to a realistic simulation of the upper layers of the solar convective zone.
We analyze the CP violating ratio epe=epsilon/epsilon in the Standard Model in view of the new KTeV results. We review the present status of the most important non-perturbative parameters B_6, B_8, B_K and of the strange quark mass m_s. We also brief ly discuss the issues of final state interactions and renormalization scheme dependence. Updating the values of the CKM parameters, of m_t and Lambda (MSbar) and using Gaussian errors for the experimental input and flat distributions for the theoretical parameters we find epe substantially below the NA31 and KTeV data: epe= (7.7^{+6.0}_{-3.5}) 10^{-4} and epe= (5.2^{+4.6}_{-2.7}) 10^{-4} in the NDR and HV renormalization schemes respectively. A simple scanning of all input parameters gives on the other hand 1.05 10^{-4} < epe < 28.8 10^{-4} and 0.26 10^{-4} < epe < 22.0 10^{-4} respectively. Analyzing the dependence on various parameters we find that only for extreme values of B_6, B_8 and m_s and suitable values of CKM parameters and Lambda(MSbar), the ratio epe can be made consistent with data. We analyze the impact of these data on the lower bounds for Im(V_{td}V_{ts}^*), Br(K_L to pi^0 nu barnu), Br(K_L to pi^0e^+e^-)_{dir} and on tan(beta) in the Two Higgs Doublet Model II.
75 - Hy Trac 2006
We present a new hybrid code for large volume, high resolution simulations of cosmic reionization, which utilizes a N-body algorithm for dark matter, physically motivated prescriptions for baryons and star formation, and an adaptive ray tracing algor ithm for radiative transfer of ionizing photons. Two test simulations each with 3 billion particles and 400 million rays in a 50 Mpc/h box have been run to give initial results. Halos are resolved down to virial temperatures of 10^4 K for the redshift range of interest in order to robustly model star formation and clumping factors. This is essential to correctly account for ionization and recombination processes. We find that the halos and sources are strongly biased with respect to the underlying dark matter, re-enforcing the requirement of large simulation boxes to minimize cosmic variance and to obtain a qualitatively correct picture of reionization. We model the stellar initial mass function (IMF), by following the spatially dependent gas metallicity evolution, and distinguish between the first generation, Population III (PopIII) stars and the second generation, Population II (PopII) stars. The PopIII stars with a top-heavy IMF produce an order of magnitude more ionizing photons at high redshifts z>10, resulting in a more extended reionization. In our simulations, complete overlap of HII regions occurrs at z~6.5 and the computed mass and volume weighted residual HI fractions at 5<z<6.5 are both in good agreement with high redshift quasar absorption measurements from SDSS. The values for the Thomson optical depth are consistent within 1-sigma of the current best-fit value from third-year WMAP.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا