ترغب بنشر مسار تعليمي؟ اضغط هنا

All tight multipartite Bell correlation inequalities for an arbitrary number of dichotomic observables per observer

54   0   0.0 ( 0 )
 نشر من قبل Marek Zukowski
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Derivation of the full set of Bell inequalities involving correlation functions, for two parties, with binary observables, and N possible local settings is not as easy as it seemed. The proof of v1 is wrong. Additionaly one can find a counterexample, which will be presented soon. Thus our thesis is dead. Still the series of Bell inequalities discussed in the manuscript (v1) form a necessary condition for local realism, and are tight. They are tight and complete (sufficient) only for N=3 settings per observer (as shown in quant-ph/0611086, fortunately using an entirely different approach).

قيم البحث

اقرأ أيضاً

Bells inequality was originally derived under the assumption that experimenters are free to select detector settings independently of any local hidden variables that might affect the outcomes of measurements on entangled particles. This assumption ha s come to be known as measurement independence (also referred to as freedom of choice or settings independence). For a two-setting, two-outcome Bell test, we derive modified Bell inequalities that relax measurement independence, for either or both observers, while remaining locally causal. We describe the loss of measurement independence for each observer using the parameters $M_1$ and $M_2$, as defined by Hall in 2010, and also by a more complete description that adds two new parameters, which we call $hat{M}_1$ and $hat{M}_2$, deriving a modified Bell inequality for each description. These relaxed inequalities subsume those considered in previous work as special cases, and quantify how much the assumption of measurement independence needs to be relaxed in order for a locally causal model to produce a given violation of the standard Bell-Clauser-Horne-Shimony-Holt (Bell-CHSH) inequality. We show that both relaxed Bell inequalities are tight bounds on the CHSH parameter by constructing locally causal models that saturate them. For any given Bell inequality violation, the new two-parameter and four-parameter models each require significantly less mutual information between the hidden variables and measurement settings than previous models. We conjecture that the new models, with optimal parameters, require the minimum possible mutual information for a given Bell violation. We further argue that, contrary to various claims in the literature, relaxing freedom of choice need not imply superdeterminism.
A method for construction of the multipartite Clauser-Horne-Shimony-Holt (CHSH) type Bell inequalities, for the case of local binary observables, is presented. The standard CHSH-type Bell inequalities can be obtained as special cases. A unified frame work to establish all kinds of CHSH-type Bell inequalities by increasing step by step the number of observers is given. As an application, compact Bell inequalities, for eight observers, involving just four correlation functions are proposed. They require much less experimental effort than standard methods and thus is experimentally friendly in multi-photon experiments.
178 - Yanmin Yang , Zhu-Jun Zheng 2017
In recent papers, the theory of representations of finite groups has been proposed to analyzing the violation of Bell inequalities. In this paper, we apply this method to more complicated cases. For two partite system, Alice and Bob each make one of $d$ possible measurements, each measurement has $n$ outcomes. The Bell inequalities based on the choice of two orbits are derived. The classical bound is only dependent on the number of measurements $d$, but the quantum bound is dependent both on $n$ and $d$. Even so, when $d$ is large enough, the quantum bound is only dependent on $d$. The subset of probabilities for four parties based on the choice of six orbits under group action is derived and its violation is described. Restricting the six orbits to three parties by forgetting the last party, and guaranteeing the classical bound invariant, the Bell inequality based on the choice of four orbits is derived. Moreover, all the corresponding nonlocal games are analyzed.
69 - Qi Zhao , You Zhou 2020
Bell inequality with self-testing property has played an important role in quantum information field with both fundamental and practical applications. However, it is generally challenging to find Bell inequalities with self-testing property for multi partite states and actually there are not many known candidates. In this work, we propose a systematical framework to construct Bell inequalities from stabilizers which are maximally violated by general stabilizer states, with two observables for each local party. We show that the constructed Bell inequalities can self-test any stabilizer state which is essentially device-independent, if and only if these stabilizers can uniquely determine the state in a device-dependent manner. This bridges the gap between device-independent and device-dependent verification methods. Our framework can provide plenty of Bell inequalities for self-testing stabilizer states. Among them, we give two families of Bell inequalities with different advantages: (1) a family of Bell inequalities with a constant ratio of quantum and classical bounds using 2N correlations, (2) Single pair inequalities improving on all previous robustness self-testing bounds using N+1 correlations, which are both efficient and suitable for realizations in multipartite systems. Our framework can not only inspire more fruitful multipartite Bell inequalities from conventional verification methods, but also pave the way for their practical applications.
For any finite number of parts, measurements and outcomes in a Bell scenario we estimate the probability of random $N$-qu$d$it pure states to substantially violate any Bell inequality with uniformly bounded coefficients. We prove that under some cond itions on the local dimension the probability to find any significant amount of violation goes to zero exponentially fast as the number of parts goes to infinity. In addition, we also prove that if the number of parts is at least 3, this probability also goes to zero as the the local Hilbert space dimension goes to infinity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا