ترغب بنشر مسار تعليمي؟ اضغط هنا

Warm HCN, C2H2, and CO in the disk of GV Tau

94   0   0.0 ( 0 )
 نشر من قبل Sean Brittain
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. L. Gibb




اسأل ChatGPT حول البحث

We present the first high-resolution, ground-based observations of HCN and C2H2 toward the T Tauri binary star system GV Tau. We detected strong absorption due to HCN nu_3 and weak C2H2 (nu_3 and nu_2 + (nu_4 + nu_5)^0_+) absorption toward the primary (GV Tau S) but not the infrared companion. We also report CO column densities and rotational temperatures, and present abundances relative to CO of HCN/CO ~0.6% and C2H2/CO ~1.2% and an upper limit for CH4/CO < 0.37% toward GV Tau S. Neither HCN nor C2H2 were detected toward the infrared companion and results suggest that abundances may differ between the two sources.

قيم البحث

اقرأ أيضاً

The Plateau de Bure Interferometer has been used to map the continuum emission at 3.4 mm and 1.1 mm together with the J=1->0 and J=3->2 lines of HCN and HCO+ towards the binary star GV Tau. The 3.4 mm observations did not resolve the binary component s and the HCN J=1->0 and HCO+ J=1->0 line emissions trace the circumbinary disk and the flattened envelope. However, the 1.1 mm observations resolved the individual disks of GV Tau N and GV Tau S and allowed us to study their chemistry. We detected the HCN 3->2 line only towards the individual disk of GV Tau N, and the emission of the HCO+ 3->2 line towards GV Tau S. Simple calculations indicate that the 3->2 line of HCN is formed in the inner R<12 AU of the disk around GV Tau N where the HCN/HCO+ abundance ratio is >300. On the contrary, this ratio is <1.6 in the disk around GV Tau S. The high HCN abundance measured in GV Tau N is well explained by photo-chemical processes in the warm (>400K) and dense disk surface.
65 - Joan R. Najita 2020
Physical processes that redistribute or remove angular momentum from protoplanetary disks can drive mass accretion onto the star and affect the outcome of planet formation. Despite ubiquitous evidence that protoplanetary disks are engaged in accretio n, the process(es) responsible remain unclear. Here we present evidence for redshifted molecular absorption in the spectrum of a Class I source that indicates rapid inflow at the disk surface. High resolution mid-infrared spectroscopy of GV Tau N reveals a rich absorption spectrum of individual lines of C2H2, HCN, NH3, and water. From the properties of the molecular absorption, we can infer that it carries a significant accretion rate (~ 1e-8 to 1e-7 Msun/yr), comparable to the stellar accretion rates of active T Tauri stars. Thus we may be observing disk accretion in action. The results may provide observational evidence for supersonic surface accretion flows, which have been found in MHD simulations of magnetized disks. The observed spectra also represent the first detection of ammonia in the planet formation region of a protoplanetary disk. With ammonia only comparable in abundance to HCN, it cannot be a major missing reservoir of nitrogen. If, as expected, the dominant nitrogen reservoir in inner disks is instead N2, its high volatility would make it difficult to incorporate into forming planets, which may help to explain the low nitrogen content of the bulk Earth.
H$_2$CO ice on dust grains is an important precursor of complex organic molecules (COMs). H$_2$CO gas can be readily observed in protoplanetary disks and may be used to trace COM chemistry. However, its utility as a COM probe is currently limited by a lack of constraints on the relative contributions of two different formation pathways: on icy grain-surfaces and in the gas-phase. We use archival ALMA observations of the resolved distribution of H$_2$CO emission in the disk around the young low-mass star DM Tau to assess the relative importance of these formation routes. The observed H$_2$CO emission has a centrally peaked and radially broad brightness profile (extending out to 500 AU). We compare these observations with disk chemistry models with and without grain-surface formation reactions, and find that both gas and grain-surface chemistry are necessary to explain the spatial distribution of the emission. Gas-phase H$_2$CO production is responsible for the observed central peak, while grain-surface chemistry is required to reproduce the emission exterior to the CO snowline (where H$_2$CO mainly forms through the hydrogenation of CO ice before being non-thermally desorbed). These observations demonstrate that both gas and grain-surface pathways contribute to the observed H$_2$CO in disks, and that their relative contributions depend strongly on distance from the host star.
We report observations made with the IRAM 30m radiotelescope in the HCN(1-0) and HCO+(1-0) lines towards a sample of molecular complexes (GMCs) in the disk of the Andromeda galaxy (M31). The targets were identified bright CO GMCs selected from the IR AM 30m CO survey with various morphologies and environments. The clouds vary in galactocentric distances from 2.4 to 15.5kpc. The HCN and HCO+ emission is easily detected in almost all observed positions, with line widths generally similar to the CO ones and there is a good correlation between the two dense gas tracers. The HCO+ emission is slightly stronger than the HCN, in particular towards GMCs with a strong star formation activity. However the HCO+ emission is weaker than the HCN towards a quiescent cloud in the inner part of M31, which could be due to a lower abundance of HCO+. We derive I_HCN/I_CO ratios between 0.008 and 0.03 and I_HCO+/I_CO ratios between less than 0.003 and 0.04. We study the radial distribution of the dense gas in the disk of M31. Unlike our Galaxy the HCO+/CO ratio is lower in the center of M31 than in the arms, which can be explained by both a lower abundance of HCO+ and different conditions of excitation. Furthermore the HCN/CO and HCO+/CO ratios appear to be higher in the inner spiral arm and weaker in the outer arm.
We report spatially resolved spectroscopy of both components of the low-mass pre-main-sequence binary GV Tau. High resolution spectroscopy in the K- and L-bands is used to characterize the stellar properties of the binary and to explore the nature of the circumstellar environment. We find that the southern component, GV Tau S, is a radial velocity variable, possibly as a result of an unseen low-mass companion. The strong warm gaseous HCN absorption reported previously toward GV Tau S (Gibb et al. 2007) was not present during the epoch of our observations. Instead, we detect warm (~500 K) molecular absorption with similar properties toward the northern infrared companion, GV Tau N. At the epoch of our observations, the absorbing gas toward GV Tau N was approximately at the radial velocity of the GV Tau molecular envelope, but it was redshifted with respect to the star by ~13 km/s. One interpretation of our results is that GV Tau N is also a binary and that most of the warm molecular absorption arises in a circumbinary disk viewed close to edge-on.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا