ﻻ يوجد ملخص باللغة العربية
Given a conditionally completely positive map $mathcal L$ on a unital $ast$-algebra $A$, we find an interesting connection between the second Hochschild cohomology of $A$ with coefficients in the bimodule $E_{mathcal L}=B^a(A oplus M)$ of adjointable maps, where $M$ is the GNS bimodule of $mathcal L$, and the possibility of constructing a quantum random walk (in the sense of cite{AP,LP,L,KBS}) corresponding to $mathcal L$.
Using coordinate-free basic operators on toy Fock spaces cite{AP}, quantum random walks are defined following the ideas in cite{LP,AP}. Strong convergence of quantum random walks associated with bounded structure maps is proved under suitable assumpt
The notion of strong 1-boundedness for finite von Neumann algebras was introduced by Jung. This framework provided a free probabilistic approach to study rigidity properties and classification of finite von Neumann algebras. In this paper, we prove t
Quantum Drinfeld Hecke algebras are generalizations of Drinfeld Hecke algebras in which polynomial rings are replaced by quantum polynomial rings. We identify these algebras as deformations of skew group algebras, giving an explicit connection to Hoc
In this paper we construct a graded Lie algebra on the space of cochains on a $mathbbZ_2$-graded vector space that are skew-symmetric in the odd variables. The Lie bracket is obtained from the classical Gerstenhaber bracket by (partial) skew-symmetri
We study quotients of the Toeplitz C*-algebra of a random walk, similar to those studied by the author and Markiewicz for finite stochastic matrices. We introduce a new Cuntz-type quotient C*-algebra for random walks that have convergent ratios of tr