ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring energy dependent polarization in soft gamma-rays using Compton scattering in PoGOLite

61   0   0.0 ( 0 )
 نشر من قبل Magnus Axelsson
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Linear polarization in X- and gamma-rays is an important diagnostic of many astrophysical sources, foremost giving information about their geometry, magnetic fields, and radiation mechanisms. However, very few X-ray polarization measurements have been made, and then only mono-energetic detections, whilst several objects are assumed to have energy dependent polarization signatures. In this paper we investigate whether detection of energy dependent polarization from cosmic sources is possible using the Compton technique, in particular with the proposed PoGOLite balloon-experiment, in the 25-100 keV range. We use Geant4 simulations of a PoGOLite model and input photon spectra based on Cygnus X-1 and accreting magnetic pulsars (100 mCrab). Effective observing times of 6 and 35 hours were simulated, corresponding to a standard and a long duration flight respectively. Both smooth and sharp energy variations of the polarization are investigated and compared to constant polarization signals using chi-square statistics. We can reject constant polarization, with energy, for the Cygnus X-1 spectrum (in the hard state), if the reflected component is assumed to be completely polarized, whereas the distinction cannot be made for weaker polarization. For the accreting pulsar, constant polarization can be rejected in the case of polarization in a narrow energy band with at least 50% polarization, and similarly for a negative step distribution from 30% to 0% polarization.


قيم البحث

اقرأ أيضاً

We describe a new balloon-borne instrument (PoGOLite) capable of detecting 10% polarisation from 200mCrab point-like sources between 25 and 80keV in one 6 hour flight. Polarisation measurements in the soft gamma-ray band are expected to provide a pow erful probe into high-energy emission mechanisms as well as the distribution of magnetic fields, radiation fields and interstellar matter. At present, only exploratory polarisation measurements have been carried out in the soft gamma-ray band. Reduction of the large background produced by cosmic-ray particles has been the biggest challenge. PoGOLite uses Compton scattering and photo-absorption in an array of 217 well-type phoswich detector cells made of plastic and BGO scintillators surrounded by a BGO anticoincidence shield and a thick polyethylene neutron shield. The narrow FOV (1.25msr) obtained with well-type phoswich detector technology and the use of thick background shields enhance the detected S/N ratio. Event selections based on recorded phototube waveforms and Compton kinematics reduce the background to that expected for a 40-100mCrab source between 25 and 50keV. A 6 hour observation on the Crab will differentiate between the Polar Cap/Slot Gap, Outer Gap, and Caustic models with greater than 5 sigma; and also cleanly identify the Compton reflection component in the Cygnus X-1 hard state. The first flight is planned for 2010 and long-duration flights from Sweden to Northern Canada are foreseen thereafter.
We investigate the polarization of Compton scattered X-rays from relativistic jets in active galactic nuclei using Monte Carlo simulations. We consider three scenarios: scattering of photons from an accretion disk, scattering of cosmic microwave back ground (CMB) photons, and synchrotron self-Comptonization (SSC) within the jet. For Comptonization of thermal disk photons or CMB photons the maximum linear polarization attained is slightly over 20% at viewing angles close to 90 degrees. The value decreases with the viewing inclination. For SSC, the maximum value may exceed 80%. The angle dependence is complicated, and it varies with the photon injection sites. Our study demonstrates that X-ray polarization, in addition to multi-wavelength spectra, can distinguish certain models for emission and particle acceleration in relativistic jets.
133 - Charles D. Dermer 2005
Recent HESS observations show that microquasars in high-mass systems are sources of VHE gamma-rays. A leptonic jet model for microquasar gamma-ray emission is developed. Using the head-on approximation for the Compton cross section and taking into ac count angular effects from the stars orbital motion, we derive expressions to calculate the spectrum of gamma rays when nonthermal jet electrons Compton-scatter photons of the stellar radiation field. Calculations are presented for power-law distributions of nonthermal electrons that are assumed to be isotropically distributed in the comoving jet frame, and applied to $gamma$-ray observations of LS 5039. We conclude that (1) the TeV emission measured with HESS cannot result only from Compton-scattered stellar radiation (CSSR), but could be synchrotron self-Compton (SSC) emission or a combination of CSSR and SSC; (2) fitting both the HESS data and the EGRET data associated with LS 5039 requires a very improbable leptonic model with a very hard electron spectrum. Because the gamma rays would be variable in a leptonic jet model, the data sets are unlikely to be representative of a simultaneously measured gamma-ray spectrum. We therefore attribute EGRET gamma rays primarily to CSSR emission, and HESS gamma rays to SSC emission. Detection of periodic modulation of the TeV emission from LS 5039 would favor a leptonic SSC or cascade hadron origin of the emission in the inner jet, whereas stochastic variability alone would support a more extended leptonic model. The puzzle of the EGRET gamma rays from LS 5039 will be quickly solved with GLAST. (Abridged)
We theoretically investigate a scattering configuration in Compton scattering, in which the orientation of the electron spin is reversed and simultaneously, the photon polarization changes from linear polarization into circular polarization. The intr insic angular momentum of electron and photon are computed along the coincident propagation direction of the incoming and outgoing photon. We find that this intrinsic angular momentum is not conserved in the considered scattering process. We also discuss the generation of entanglement for the considered scattering setup and present an angle dependent investigation of the corresponding differential cross section, Stokes parameters and spin expectation.
Double-polarization observables in the reaction $vec{e}p rightarrow evec{p}gamma{}$ have been measured at $Q^2=0.33 (GeV/c)^2$. The experiment was performed at the spectrometer setup of the A1 Collaboration using the 855 MeV polarized electron beam p rovided by the Mainz Microtron (MAMI) and a recoil proton polarimeter. From the double-polarization observables the structure function $P_{LT}^perp$ is extracted for the first time, with the value $(-15.4 pm 3.3 (stat.)^{+1.5}_{-2.4} (syst.)) GeV^{-2}$, using the low-energy theorem for Virtual Compton Sattering. This structure function provides a hitherto unmeasured linear combination of the generalized polarizabilities of the proton.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا