ترغب بنشر مسار تعليمي؟ اضغط هنا

Gamma Rays from Compton Scattering in the Jets of Microquasars: Application to LS 5039

134   0   0.0 ( 0 )
 نشر من قبل Charles Dermer
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Charles D. Dermer




اسأل ChatGPT حول البحث

Recent HESS observations show that microquasars in high-mass systems are sources of VHE gamma-rays. A leptonic jet model for microquasar gamma-ray emission is developed. Using the head-on approximation for the Compton cross section and taking into account angular effects from the stars orbital motion, we derive expressions to calculate the spectrum of gamma rays when nonthermal jet electrons Compton-scatter photons of the stellar radiation field. Calculations are presented for power-law distributions of nonthermal electrons that are assumed to be isotropically distributed in the comoving jet frame, and applied to $gamma$-ray observations of LS 5039. We conclude that (1) the TeV emission measured with HESS cannot result only from Compton-scattered stellar radiation (CSSR), but could be synchrotron self-Compton (SSC) emission or a combination of CSSR and SSC; (2) fitting both the HESS data and the EGRET data associated with LS 5039 requires a very improbable leptonic model with a very hard electron spectrum. Because the gamma rays would be variable in a leptonic jet model, the data sets are unlikely to be representative of a simultaneously measured gamma-ray spectrum. We therefore attribute EGRET gamma rays primarily to CSSR emission, and HESS gamma rays to SSC emission. Detection of periodic modulation of the TeV emission from LS 5039 would favor a leptonic SSC or cascade hadron origin of the emission in the inner jet, whereas stochastic variability alone would support a more extended leptonic model. The puzzle of the EGRET gamma rays from LS 5039 will be quickly solved with GLAST. (Abridged)

قيم البحث

اقرأ أيضاً

83 - J. M. Paredes 2002
We present here new observations conducted with the EVN and MERLIN of the persistent microquasar LS 5039 discovered by Paredes et al. (2000) with the VLBA. The new observations confirm the presence of an asymmetric two-sided jet reaching up to 1000 A U on the longest jet arm. The results suggest a bending of the jets with increasing distance from the core and/or precession. The origin and location of the high-energy gamma-ray emission associated with the system is discussed and an estimate of the magnetic field at the base of the jet given. Our results suggest a well collimated radio jet. We also comment on new observing strategies to be used with satellites and forthcoming detectors, since this persistent source appears to be a rather good laboratory to explore the accretion/ejection processes taking place near compact objects.
131 - J. Takata 2014
We study mechanisms of multi-wavelength emissions (X-ray, GeV and TeV gamma-rays) from the gamma-ray binary LS~5039. This paper is composed of two parts. In the first part, we report on results of observational analysis using four year data of fermi Large Area Telescope. Due to the improvement of instrumental response function and increase of the statistics, the observational uncertainties of the spectrum in $sim$100-300 MeV bands and $>10$GeV bands are significantly improved. The present data analysis suggests that the 0.1-100GeV emissions from LS~5039 contain three different components; (i) the first component contributes to $<$1GeV emissions around superior conjunction, (ii) the second component dominates in 1-10GeV energy bands and (iii) the third component is compatible to lower energy tail of the TeV emissions. In the second part, we develop an emission model to explain the properties of the phase-resolved emissions in multi-wavelength observations. Assuming that LS~5039 includes a pulsar, we argue that both emissions from magnetospheric outer gap and inverse-Compton scattering process of cold-relativistic pulsar wind contribute to the observed GeV emissions. We assume that the pulsar is wrapped by two kinds of termination shock; Shock-I due to the interaction between the pulsar wind and the stellar wind and Shock-II due to the effect of the orbital motion. We propose that the X-rays are produced by the synchrotron radiation at Shock-I region and the TeV gamma-rays are produced by the inverse-Compton scattering process at Shock-II region.
102 - P.Goldoni 2006
LS 5039 is the only X-ray binary persistently detected at TeV energies by the Cherenkov HESS telescope. It is moreover a gamma-ray emitter in the GeV and possibly MeV energy ranges. To understand important aspects of jet physics, like the magnetic fi eld content or particle acceleration, and emission processes, such as synchrotron and inverse Compton (IC), a complete modeling of the multiwavelength data is necessary. LS 5039 has been detected along almost all the electromagnetic spectrum thanks to several radio, infrared, optical and soft X-ray detections. However, hard X-ray detections above 20 keV have been so far elusive and/or doubtful, partly due to source confusion for the poor spatial resolution of hard X-ray instruments. We report here on deep (300 ksec) serendipitous INTEGRAL hard X-ray observations of LS 5039, coupled with simultaneous VLA radio observations. We obtain a 20-40 keV flux of 1.1 +/- 0.3 mCrab (5.9 (+/-1.6) X 10^{-12} erg cm^{-2} s^{-1}), a 40-100 keV upper limit of 1.5 mCrab (9.5 x 10^{-12} erg cm^{-2}s^{-1}), and typical radio flux densities of about 25 mJy at 5GHz. These hard X-ray fluxes are significantly lower than previous estimates obtained with BATSE in the same energy range but, in the lower interval, agree with extrapolation of previous RXTE measurements. The INTEGRAL observations also hint to a break in the spectral behavior at hard X-rays. A more sensitive characterization of the hard X-ray spectrum of LS 5039 from 20 to 100 keV could therefore constrain key aspects of the jet physics, like the relativistic particle spectrum and the magnetic field strength. Future multiwavelength observations would allow to establish whether such hard X-ray synchrotron emission is produced by the same population of relativistic electrons as those presumably producing TeV emission through IC.
We investigate the polarization of Compton scattered X-rays from relativistic jets in active galactic nuclei using Monte Carlo simulations. We consider three scenarios: scattering of photons from an accretion disk, scattering of cosmic microwave back ground (CMB) photons, and synchrotron self-Comptonization (SSC) within the jet. For Comptonization of thermal disk photons or CMB photons the maximum linear polarization attained is slightly over 20% at viewing angles close to 90 degrees. The value decreases with the viewing inclination. For SSC, the maximum value may exceed 80%. The angle dependence is complicated, and it varies with the photon injection sites. Our study demonstrates that X-ray polarization, in addition to multi-wavelength spectra, can distinguish certain models for emission and particle acceleration in relativistic jets.
Black holes, anywhere in the stellar-mass to supermassive range, are often associated with relativistic jets. Models suggest that jet production may be a universal process common in all black hole systems regardless of their mass. Although in many ca ses observations support such hypotheses for microquasars and Seyfert galaxies, little is known on whether boosted blazar jets also comply with such universal scaling laws. We use uniquely rich multiwavelength radio light curves from the F-GAMMA program and the most accurate Doppler factors available to date to probe blazar jets in their emission rest frame with unprecedented accuracy. We identify for the first time a strong correlation between the blazar intrinsic broad-band radio luminosity and black hole mass, which extends over $sim$ 9 orders of magnitude down to microquasars scales. Our results reveal the presence of a universal scaling law that bridges the observing and emission rest frames in beamed sources and allows us to effectively constrain jet models. They consequently provide an independent method for estimating the Doppler factor, and for predicting expected radio luminosities of boosted jets operating in systems of intermediate or tens-of-solar mass black holes, immediately applicable to cases as those recently observed by LIGO.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا