ﻻ يوجد ملخص باللغة العربية
In most theories of gravity involving torsion, the source for torsion is the intrinsic spin of matter. Since the spins of fermions are normally randomly oriented in macroscopic bodies, the torsion generated is normally negligible. However, in a recent paper, Mao et al. point out that there is a class of theories in which the angular momentum of macroscopic spinning bodies generates a significant amount of torsion. They argue that by the principle of action equals reaction, one would expect the angular momentum of test bodies to couple to a background torsion field, and therefore the precession of the GPB gyroscopes should be affected in these theories by the torsion generated by the Earth. We show that in fact the principle of action equals reaction does not apply to these theories. We examine in detail a generalization of the Hayashi-Shirafuji theory suggested by Mao et al. called Einstein-Hayashi-Shirafuji theory. There are a variety of differe
In this manuscript we will present the theoretical framework of the recently proposed infinite derivative theory of gravity with a non-symmetric connection. We will explicitly derive the field equations at the linear level and obtain new solutions wi
This Thesis is devoted to the study of Metric-Affine Theories of Gravity and Applications to Cosmology. The thesis is organized as follows. In the first Chapter we define the various geometrical quantities that characterize a non-Riemannian geometry.
We consider f(R) modified gravity theories in the metric variation formalism and attempt to reconstruct the function f(R) by demanding a background LCDM cosmology. In particular we impose the following requirements: a. A background cosmic history H(z
The Horndeski theories are extended into the Lovelock gravity theory. When the canonical scalar field is uniquely kinetically coupled to the Lovelock tensors, it is named after Lovelock scalar field. The Lovelock scalar field model is a subclass of t
Thanks to the Planck Collaboration, we know the value of the scalar spectral index of primordial fluctuations with unprecedented precision. In addition, the joint analysis of the data from Planck, BICEP2, and KEK has further constrained the value of