ترغب بنشر مسار تعليمي؟ اضغط هنا

The Fincher-Burke spin excitations and omega/T scaling in the insulating 5% Sr-doped La2CuO4

93   0   0.0 ( 0 )
 نشر من قبل Wei Bao
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Insulating La1.95Sr0.05CuO4 shares with superconducting cuprates the same Fincher-Burke-like spin excitations, which usually are observed in itinerant antiferromagnets. The local spectral function satisfies omega/T scaling above ~16 K for this incommensurate insulating cuprate. Together with previous results in commensurate insulating and incommensurate superconducting cuprates, these results further support the general scaling prediction for square-lattice quantum spin S=1/2 systems. The width of incommensurate peaks in La1.95Sr0.05CuO4 scales to a similar finite value as at optimal doping, strongly suggesting that they are similarly distant from a quantum critical point. They might both be limited to a finite correlation length by the partial spin-glass freezing.



قيم البحث

اقرأ أيضاً

We use inelastic neutron scattering to study temperature and energy dependence of spin excitations in optimally P-doped BaFe2(As0.7P0.3)2 superconductor (Tc = 30 K) throughout the Brillouin zone. In the undoped state, spin waves and paramagnetic spin excitations of BaFe2As2 stem from antiferromagnetic (AF) ordering wave vector QAF= (1/-1,0) and peaks near zone boundary at (1/-1,1/-1) around 180 meV. Replacing 30% As by smaller P to induce superconductivity, low-energy spin excitations of BaFe2(As0.7P0.3)2form a resonance in the superconducting state and high-energy spin excitations now peaks around 220 meV near (1/-1,1/-1). These results are consistent with calculations from a combined density functional theory and dynamical mean field theory, and suggest that the decreased average pnictogen height in BaFe2(As0.7P0.3)2 reduces the strength of electron correlations and increases the effective bandwidth of magnetic excitations.
217 - K. Ishii , M. Fujita , T. Sasaki 2014
The evolution of electronic (spin and charge) excitations upon carrier doping is an extremely important issue in superconducting layered cuprates and the knowledge of its asymmetry between electron- and hole-dopings is still fragmentary. Here we comb ine x-ray and neutron inelastic scattering measurements to track the doping dependence of both spin and charge excitations in electron-doped materials. Copper L3 resonant inelastic x-ray scattering spectra show that magnetic excitations shift to higher energy upon doping. Their dispersion becomes steeper near the magnetic zone center and deeply mix with charge excitations, indicating that electrons acquire a highly itinerant character in the doped metallic state. Moreover, above the magnetic excitations, an additional dispersing feature is observed near the {Gamma}-point, and we ascribe it to particle-hole charge excitations. These properties are in stark contrast with the more localized spin-excitations (paramagnons) recently observed in hole-doped compounds even at high doping-levels.
88 - Bingying Pan , Yao Shen , Die Hu 2016
Heavily electron-doped iron-selenide (HEDIS) high-transition-temperature (high-$T_{rm{c}}$) superconductors, which have no hole Fermi pockets, but have a notably high $T_{rm{c}}$, have challenged the prevailing $s$$_pm$ pairing scenario originally pr oposed for iron pnictides containing both electron and hole pockets. The microscopic mechanism underlying the enhanced superconductivity in HEDIS remains unclear. Here, we used neutron scattering to study the spin excitations of the HEDIS material Li$_{0.8}$Fe$_{0.2}$ODFeSe ($T_{rm{c}}$ = 41 K). Our data revealed nearly ring-shaped magnetic resonant excitations surrounding ($pi$, $pi$) at $sim$ 21 meV. As the energy increased, the spin excitations assumed a diamond shape, and they dispersed outward until the energy reached $sim$ 60 meV and then inward at higher energies. The observed energy-dependent momentum structure and twisted dispersion of spin excitations near ($pi$, $pi$) are analogous to those of hole-doped cuprates in several aspects, thus implying that such spin excitations are essential for the remarkably high $T_{rm{c}}$ in these materials.
72 - O. Ivashko , N. E. Shaik , X. Lu 2017
A resonant inelastic x-ray scattering (RIXS) study of overdamped spin-excitations in slightly underdoped La$_{2-x}$Sr$_{x}$CuO$_4$ (LSCO) with $x=0.12$ and $0.145$ is presented. Three high-symmetry directions have been investigated: (1) the antinodal $(0,0)rightarrow (1/2,0)$, (2) the nodal $(0,0)rightarrow (1/4,1/4)$ and (3) the zone boundary direction $(1/2,0)rightarrow (1/4,1/4)$ connecting these two. The overdamped excitations exhibit strong dispersions along (1) and (3), whereas a much more modest dispersion is found along (2). This is in strong contrast to the undoped compound La$_{2}$CuO$_4$ (LCO) for which the strongest dispersions are found along (1) and (2). The $t-t^{prime}-t^{primeprime}-U$ Hubbard model used to explain the excitation spectrum of LCO predicts $-$ for constant $U/t$ $-$ that the dispersion along (3) scales with $(t^{prime}/t)^2$. However, the diagonal hopping $t^{prime}$ extracted on LSCO using single-band models is low ($t^{prime}/tsim-0.16$) and decreasing with doping. We therefore invoked a two-orbital ($d_{x^2-y^2}$ and $d_{z^2}$) model which implies that $t^{prime}$ is enhanced. This effect acts to enhance the zone-boundary dispersion within the Hubbard model. We thus conclude that hybridization of $d_{x^2-y^2}$ and $d_{z^2}$ states has a significant impact on the zone-boundary dispersion in LSCO.
70 - M. Kofu , H. Kimura , K. Hirota 2004
Impurity effects of Zn and Ni on the low-energy spin excitations were systematically studied in optimally doped La1.85Sr0.15Cu1-yAyO4 (A=Zn, Ni) by neutron scattering. Impurity-free La1.85Sr0.15CuO4 shows a spin gap of 4meV below Tc in the antiferrom agnetic(AF) incommensurate spin excitation. In Zn:y=0.004, the spin excitation shows a spin gap of 3meV below Tc. In Zn:y=0.008 and Zn:y=0.011, however, the magnetic signals at 3meV decrease below Tc and increase again at lower temperature, indicating an in-gap state. In Zn:y=0.017, the low-energy spin state remains unchanged with decreasing temperature, and elastic magnetic peaks appear below 20K then exponentially increase. As for Ni:y=0.009 and Ni:y=0.018, the low-energy excitations below 3meV and 2meV disappear below Tc. The temperature dependence at 3meV, however, shows no upturn in constrast with Zn:y=0.008 and Zn:y=0.011, indicating the absence of in-gap state. In Ni:y=0.029, the magnetic signals were observed also at 0meV. Thus the spin gap closes with increasing Ni. Furthermore, as omega increases, the magnetic peak width broadens and the peak position, i.e. incommensurability, shifts toward the magnetic zone center (pi pi). We interpret the impurity effects as follows: Zn locally makes a non-superconducting island exhibiting the in-gap state in the superconducting sea with the spin gap. Zn reduces the superconducting volume fraction, thus suppressing Tc. On the other hand, Ni primarily affects the superconducting sea, and the spin excitations become more dispersive and broaden with increasing energy, which is recognized as a consequence of the reduction of energy scale of spin excitations. We believe that the reduction of energy scale is relevant to the suppression of Tc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا