ترغب بنشر مسار تعليمي؟ اضغط هنا

Millimeter imaging of HD 163296: probing the disk structure and kinematics

79   0   0.0 ( 0 )
 نشر من قبل Andrea Isella
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Isella




اسأل ChatGPT حول البحث

We present new multi-wavelength millimeter interferometric observations of the Herbig Ae star HD 163296 obtained with the IRAM/PBI, SMA and VLA arrays both in continuum and in the 12CO, 13CO and C18O emission lines. Gas and dust properties have been obtained comparing the observations with self-consistent disk models for the dust and CO emission. The circumstellar disk is resolved both in the continuum and in CO. We find strong evidence that the circumstellar material is in Keplerian rotation around a central star of 2.6 Msun. The disk inclination with respect to the line of sight is 46+-4 deg with a position angle of 128+-4 deg. The slope of the dust opacity measured between 0.87 and 7 mm (beta=1) confirms the presence of mm/cm-size grains in the disk midplane. The dust continuum emission is asymmetric and confined inside a radius of 200 AU while the CO emission extends up to 540 AU. The comparison between dust and CO temperature indicates that CO is present only in the disk interior. Finally, we obtain an increasing depletion of CO isotopomers from 12CO to 13CO and C18O. We argue that these results support the idea that the disk of HD 163296 is strongly evolved. In particular, we suggest that there is a strong depletion of dust relative to gas outside 200 AU; this may be due to the inward migration of large bodies that form in the outer disk or to clearing of a large gap in the dust distribution by a low mass companion.

قيم البحث

اقرأ أيضاً

We investigate the structure and kinematics of the circumstellar disk around the Herbig Ae star MWC 758 using high resolution observations of the 12CO (3-2) and dust continuum emission at the wavelengths of 0.87 and 3.3 mm. We find that the dust emis sion peaks at an orbital radius of about 100 AU, while the CO intensity has a central peak coincident with the position of the star. The CO emission is in agreement with a disk in keplerian rotation around a 2.0 Msun star, confirming that MWC758 is indeed an intermediate mass star. By comparing the observation with theoretical disk models, we derive that the disk surface density Sigma(r) steeply increases from 40 to 100 AU, and decreases exponentially outward. Within 40 AU, the disk has to be optically thin in the continuum emission at millimeter wavelengths to explain the observed dust morphology, though our observations lack the angular resolution and sensitivity required to constrain the surface density on these spatial scales. The surface density distribution in MWC 758 disk is similar to that of ``transition disks, though no disk clearing has been previously inferred from the analysis of the spectral energy distribution (SED). Moreover, the asymmetries observed in the dust and CO emission suggest that the disk may be gravitationally perturbed by a low mass companion orbiting within a radius of 30 AU. Our results emphasize that SEDs alone do not provide a complete picture of disk structure and that high resolution millimeter-wave images are essential to reveal the structure of the cool disk mid plane.
The physical processes occurring within the inner few astronomical units of proto-planetary disks surrounding Herbig Ae stars are crucial to setting the environment in which the outer planet-forming disk evolves and put critical constraints on the pr ocesses of accretion and planet migration. We present the most complete published sample of high angular resolution H- and K-band observations of the stars HD 163296 and HD 190073, including 30 previously unpublished nights of observations of the former and 45 nights of the latter with the CHARA long-baseline interferometer, in addition to archival VLTI data. We confirm previous observations suggesting significant near-infrared emission originates within the putative dust evaporation front of HD 163296 and show this is the case for HD 190073 as well. The H- and K-band sizes are the same within $(3 pm 3)%$ for HD 163296 and within $(6 pm 10)%$ for HD 190073. The radial surface brightness profiles for both disks are remarkably Gaussian-like with little or no sign of the sharp edge expected for a dust evaporation front. Coupled with spectral energy distribution analysis, our direct measurements of the stellar flux component at H and K bands suggest that HD 190073 is much younger (<400 kyr) and more massive (~5.6 M$_odot$) than previously thought, mainly as a consequence of the new Gaia distance (891 pc).
The condensation fronts (snow lines) of H2O, CO and other abundant volatiles in the midplane of a protoplanetary disk affect several aspects of planet formation. Locating the CO snow line, where the CO gas column density is expected to drop substanti ally, based solely on CO emission profiles is challenging. This has prompted an exploration of chemical signatures of CO freeze-out. We present ALMA Cycle 1 observations of the N2H+ J=3-2 and DCO+ J=4-3 emission lines toward the disk around the Herbig Ae star HD~163296 at ~0.5 (60 AU) resolution, and evaluate their utility as tracers of the CO snow line location. The N2H+ emission is distributed in a ring with an inner radius at 90 AU, corresponding to a midplane temperature of 25 K. This result is consistent with a new analysis of optically thin C18O data, which implies a sharp drop in CO abundance at 90 AU. Thus N2H+ appears to be a robust tracer of the midplane CO snow line. The DCO+ emission also has a ring morphology, but neither the inner nor the outer radius coincides with the CO snow line location of 90 AU, indicative of a complex relationship between DCO+ emission and CO freeze-out in the disk midplane. Compared to TW Hya, CO freezes out at a higher temperature in the disk around HD 163296 (25 vs. 17 K in the TW Hya disk), perhaps due to different ice compositions. This highlights the importance of actually measuring the CO snow line location, rather than assuming a constant CO freeze-out temperature for all disks.
High resolution ALMA observations revealed a variety of rich substructures in numerous protoplanetary disks. These structures consist of rings, gaps and asymmetric features. It is debated whether planets can be accounted for these substructures in th e dust continuum. Characterizing the origin of asymmetries as seen in HD 163296 might lead to a better understanding of planet formation and the underlying physical parameters of the system. We test the possibility of the formation of the crescent-shaped asymmetry in the HD 163296 disk through planet-disk interaction. The goal is to obtain constraints on planet masses and eccentricities and disk viscosities. Two dimensional, multi-fluid, hydrodynamical simulations are performed with the FARGO3D code including three embedded planets. Dust is described with the pressureless fluid approach and is distributed over eight size bins. Resulting grids are post-processed with the radiative transfer code RADMC-3D and the CASA software to model synthetic observations. We find that the crescent-shaped asymmetry can be qualitatively modeled with a Jupiter mass planet at a radial distance of 48 au. Dust is trapped preferably in the trailing Lagrange point L5 with a mass of 10 to 15 earth masses. Increased values of eccentricity of the innermost Jupiter mass planet damages the stability of the crescent-shaped feature and does not reproduce the observed radial proximity to the first prominent ring in the system. Generally, a low level of viscosity ($alpha leq 2cdot10^{-3}$) is necessary to allow the existence of such a feature. Including dust feedback the leading point L4 can dominantly capture dust for dust grains with an initial Stokes number $leq 3.6cdot 10^{-2}$. The observational results suggest a negligible effect of dust feedback since only one such feature has been detected so far.
The high spatial and line sensitivity of ALMA opens the possibility of resolving emission from molecules in circumstellar disks. With an understanding of physical conditions under which molecules have high abundance, they can be used as direct tracer s of distinct physical regions. In particular, DCO+ is expected to have an enhanced abundance within a few Kelvin of the CO freezeout temperature of 19 K, making it a useful probe of the cold disk midplane. We compare ALMA line observations of HD 163296 to a grid of models. We vary the upper- and lower-limit temperatures of the region in which DCO+ is present as well as the abundance of DCO+ in order to fit channel maps of the DCO+ J=5-4 line. To determine the abundance enhancement compared to the general interstellar medium, we carry out similar fitting to HCO+ J=4-3 and H13CO+ J=4-3 observations. ALMA images show centrally peaked extended emission from HCO+ and H13CO+. DCO+ emission lies in a resolved ring from ~110 to 160 AU. The outer radius approximately corresponds to the size of the CO snowline as measured by previous lower resolution observations of CO lines in this disk. The ALMA DCO+ data now resolve and image the CO snowline directly. In the best fitting models, HCO+ exists in a region extending from the 19 K isotherm to the photodissociation layer with an abundance of 3x10^-10 relative to H2. DCO+ exists within the 19-21 K region of the disk with an abundance ratio [DCO+] / [HCO+] = 0.3. This represents a factor of 10^4 enhancement of the DCO+ abundance within this narrow region of the HD 163296 disk. Such a high enhancement has only previously been seen in prestellar cores. The inferred abundances provide a lower limit to the ionization fraction in the midplane of the cold outer disk (approximately greater than 4x10^-10), and suggest the utility of DCO+ as a tracer of its parent molecule H2D+. Abridged
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا