ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the Inner Disk Emission of the Herbig Ae Stars HD 163296 and HD 190073

99   0   0.0 ( 0 )
 نشر من قبل Benjamin Setterholm
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The physical processes occurring within the inner few astronomical units of proto-planetary disks surrounding Herbig Ae stars are crucial to setting the environment in which the outer planet-forming disk evolves and put critical constraints on the processes of accretion and planet migration. We present the most complete published sample of high angular resolution H- and K-band observations of the stars HD 163296 and HD 190073, including 30 previously unpublished nights of observations of the former and 45 nights of the latter with the CHARA long-baseline interferometer, in addition to archival VLTI data. We confirm previous observations suggesting significant near-infrared emission originates within the putative dust evaporation front of HD 163296 and show this is the case for HD 190073 as well. The H- and K-band sizes are the same within $(3 pm 3)%$ for HD 163296 and within $(6 pm 10)%$ for HD 190073. The radial surface brightness profiles for both disks are remarkably Gaussian-like with little or no sign of the sharp edge expected for a dust evaporation front. Coupled with spectral energy distribution analysis, our direct measurements of the stellar flux component at H and K bands suggest that HD 190073 is much younger (<400 kyr) and more massive (~5.6 M$_odot$) than previously thought, mainly as a consequence of the new Gaia distance (891 pc).



قيم البحث

اقرأ أيضاً

326 - John D. Monnier 2017
In order to look for signs of on-going planet formation in young disks, we carried out the first J-band polarized emission imaging of the Herbig Ae/Be stars HD 150193, HD 163296, and HD 169142 using the Gemini Planet Imager (GPI), along with new H ba nd observations of HD 144432. We confirm the complex double ring structure for the nearly face-on system HD 169142 first seen in H-band, finding the outer ring to be substantially redder than the inner one in polarized intensity. Using radiative transfer modeling, we developed a physical model that explains the full spectral energy distribution (SED) and J- and H-band surface brightness profiles, suggesting that the differential color of the two rings could come from reddened starlight traversing the inner wall and may not require differences in grain properties. In addition, we clearly detect an elongated, off-center ring in HD 163296 (MWC 275), locating the scattering surface to be 18 AU above the midplane at a radial distance of 77 AU, co-spatial with a ring seen at 1.3mm by ALMA linked to the CO snow line. Lastly, we report a weak tentative detection of scattered light for HD 150193 (MWC 863) and a non-detection for HD 144432; the stellar companion known for each of these targets has likely disrupted the material in the outer disk of the primary star. For HD 163296 and HD 169142, the prominent outer rings we detect could be evidence for giant planet formation in the outer disk or a manifestation of large-scale dust growth processes possibly related to snow-line chemistry.
Infrared photometry and spectroscopy covering a time span of a quarter century are presented for HD 31648 (MWC 480) and HD 163296 (MWC 275). Both are isolated Herbig Ae stars that exhibit signs of active accretion, including driving bipolar flows wit h embedded Herbig-Haro (HH) objects. HD 163296 was found to be relatively quiescent photometrically in its inner disk region, with the exception of a major increase in emitted flux in a broad wavelength region centered near 3 microns in 2002. In contrast, HD 31648 has exhibited sporadic changes in the entire 3-13 micron region throughout this span of time. In both stars the changes in the 1-5 micron flux indicate structural changes in the region of the disk near the dust sublimation zone, possibly causing its distance from the star to vary with time. Repeated thermal cycling through this region will result in the preferential survival of large grains, and an increase in the degree of crystallinity. The variability observed in these objects has important consequences for the interpretation of other types of observations. For example, source variability will compromise models based on interferometry measurements unless the interferometry observations are accompanied by nearly-simultaneous photometric data.
Context. The inner few au region of planet-forming disks is a complex environment. High angular resolution observations have a key role in understanding the disk structure and the dynamical processes at work. Aims. In this study we aim to characteriz e the mid-infrared brightness distribution of the inner disk of the young intermediate-mass star HD 163296, from VLTI/MATISSE observations. Methods. We use geometric models to fit the data. Our models include a smoothed ring, a flat disk with inner cavity, and a 2D Gaussian. The models can account for disk inclination and for azimuthal asymmetries as well. We also perform numerical hydro-dynamical simulations of the inner edge of the disk. Results. Our modeling reveals a significant brightness asymmetry in the L-band disk emission. The brightness maximum of the asymmetry is located at the NW part of the disk image, nearly at the position angle of the semimajor axis. The surface brightness ratio in the azimuthal variation is $3.5 pm 0.2$. Comparing our result on the location of the asymmetry with other interferometric measurements, we confirm that the morphology of the $r<0.3$ au disk region is time-variable. We propose that this asymmetric structure, located in or near the inner rim of the dusty disk, orbits the star. For the physical origin of the asymmetry, we tested a hypothesis where a vortex is created by Rossby wave instability, and we find that a unique large scale vortex may be compatible with our data. The half-light radius of the L-band emitting region is $0.33pm 0.01$ au, the inclination is ${52^circ}^{+5^circ}_{-7^circ}$, and the position angle is $143^circ pm 3^circ$. Our models predict that a non-negligible fraction of the L-band disk emission originates inside the dust sublimation radius for $mu$m-sized grains. Refractory grains or large ($gtrsim 10 mu$m-sized) grains could be the origin for this emission.
HD 163296 is a Herbig Ae star that underwent a dramatic $sim$0.8 magnitude drop in brightness in the V photometric band in 2001 and a brightening in the near-IR in 2002. Because the star possesses Herbig-Haro objects travelling in outflowing bipolar jets, it was suggested that the drop in brightness was due to a clump of dust entrained in a disk wind, blocking the line-on-sight toward the star. In order to quantify this hypothesis, we investigated the brightness drop at visible wavelengths and the brightening at near-IR wavelengths of HD 163296 using the Monte Carlo Radiative Transfer Code, HOCHUNK3D. We created three models to understand the events. Model 1 describes the quiescent state of the system. Model 2 describes the change in structure that led to the drop in brightness in 2001. Model 3 describes the structure needed to produce the observed 2002 brightening of the near-IR wavelengths. Models 2 and 3 utilize a combination of a disk wind and central bipolar flow. By introducing a filled bipolar cavity in Models 2 and 3, we were able to successfully simulate a jet-like structure for the star with a disk wind and created the drop and subsequent increase in brightness of the system. On the other hand, when the bipolar cavity is not filled, Model 1 replicates the quiescent state of the system.
Herbig Ae/Be stars are intermediate-mass pre-main sequence stars surrounded by circumstellar dust disks. Some are observed to produce jets, whose appearance as a sequence of shock fronts (knots) suggests a past episodic outflow variability. This jet fossil record can be used to reconstruct the outflow history. We present the first optical to near-infrared (NIR) VLT/X-shooter spectra of the jet from the Herbig Ae star HD 163296. We determine physical conditions in the knots, as well as their kinematic launch epochs. Knots are formed simultaneously on either side of the disk, with a regular interval of ~16 yr. The velocity dispersion versus jet velocity and the energy input are comparable in both lobes. However, the mass loss rate, velocity, and shock conditions are asymmetric. We find Mjet/Macc ~ 0.01-0.1, consistent with magneto-centrifugal jet launching models. No evidence for dust is found in the high-velocity jet, suggesting it is launched within the sublimation radius (<0.5 au). The jet inclination measured from proper motions and radial velocities confirms it is perpendicular to the disk. A tentative relation is found between the structure of the jet and the photometric variability of the source. Episodes of NIR brightening were previously detected and attributed to a dusty disk wind. We report for the first time significant optical fadings lasting from a few days up to a year, coinciding with the NIR brightenings. These are likely caused by dust lifted high above the disk plane; this supports the disk wind scenario. The disk wind is launched at a larger radius than the high-velocity atomic jet, although their outflow variability may have a common origin. No significant relation between outflow and accretion variability could be established. Our findings confirm that this source undergoes periodic ejection events, which may be coupled with dust ejections above the disk plane.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا