ﻻ يوجد ملخص باللغة العربية
We consider a sequence of additive functionals {phi_n}, set on a sequence of Markov chains {X_n} that weakly converges to a Markov process X. We give sufficient condition for such a sequence to converge in distribution, formulated in terms of the characteristics of the additive functionals, and related to the Dynkins theorem on the convergence of W-functionals. As an application of the main theorem, the general sufficient condition for convergence of additive functionals in terms of transition probabilities of the chains X_n is proved.
The path independence of additive functionals for SDEs driven by the G-Brownian motion is characterized by nonlinear PDEs. The main result generalizes the existing ones for SDEs driven by the standard Brownian motion.
Dealing with finite Markov chains in discrete time, the focus often lies on convergence behavior and one tries to make different copies of the chain meet as fast as possible and then stick together. There is, however, a very peculiar kind of discrete
We review recent results on the metastable behavior of continuous-time Markov chains derived through the characterization of Markov chains as unique solutions of martingale problems.
We introduce the space of virtual Markov chains (VMCs) as a projective limit of the spaces of all finite state space Markov chains (MCs), in the same way that the space of virtual permutations is the projective limit of the spaces of all permutations
We formulate some simple conditions under which a Markov chain may be approximated by the solution to a differential equation, with quantifiable error probabilities. The role of a choice of coordinate functions for the Markov chain is emphasised. The