ﻻ يوجد ملخص باللغة العربية
We consider an interaction-driven scenario for the two-dimensional metal-insulator transition in zero magnetic field (2D-MIT), based on melting the Wigner crystal through vacancy-interstitial pair formation. We show that the transition from the Wigner-Mott insulator to a heavy Fermi liquid emerges as an instability to self-doping, resembling conceptually the solid to normal liquid transition in He3. The resulting physical picture naturally explains many puzzling features of the 2D-MIT.
We present a theory describing the mechanism for the two-dimensional (2D) metal-insulator transition (MIT) in absence of disorder. A two-band Hubbard model is introduced, describing vacancy-interstitial pair excitations within the Wigner crystal. Kin
We study the effects of hole doping on one-dimensional Mott insulators with orbital degrees of freedom. We describe the system in terms of a generalized t-J model. At a specific point in parameter space the model becomes integrable in analogy to the
Whether or not anomalies in the thermal conductivity from insulating cuprates can be attributed to antiferromagnetic order and magnons in a 2D Mott insulator remains an intriguing open question. To shed light on this issue, we investigate the thermal
High temperature superconductivity in cuprates arises from doping a parent Mott insulator by electrons or holes. A central issue is how the Mott gap evolves and the low-energy states emerge with doping. Here we report angle-resolved photoemission spe
We show that lightly doped holes will be self-trapped in an antiferromagnetic spin background at low-temperatures, resulting in a spontaneous translational symmetry breaking. The underlying Mott physics is responsible for such novel self-localization