ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlated modulation between the redshifted Fe K alpha line and the continuum emission in NGC 3783

179   0   0.0 ( 0 )
 نشر من قبل Francesco Tombesi
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. Tombesi




اسأل ChatGPT حول البحث

It has been suggested that X-ray observations of rapidly variable Seyfert galaxies may hold the key to probe the gas orbital motions in the innermost regions of accretion discs around black holes and, thus, trace flow patterns under the effect of the hole strong gravitational field. We explore this possibility analizing XMM-Newton observations of the seyfert 1 galaxy NGC 3783. A detiled time-resolved spectral analysis is performed down to the shortest possible time-scales (few ks) using excess maps and cross-correlating light curves in different energy bands. In addition to a constant core of the Fe K alpha line, we detected a variable and redshifted Fe K alpha emission feature between 5.3-6.1 keV. The line exhibits a modulation on a time-scale of 27 ks that is similar to and in phase with a modulation of the 0.3-10 keV source continuum. The time-scale of the correlated variability of the redshifted Fe line and continuum agrees with the local dynamical time-scale of the accretion disc at 10 r_g around a black hole of 10^7 M_sun. Given the shape of the redshfted line emission and the overall X-ray variability pattern, the line is likely to arise from the relativistic region near the black hole.

قيم البحث

اقرأ أيضاً

The observed enhancement of the Fe K$alpha$ line in three gravitationally lensed QSOs (MG J0414+0534, QSO 2237+0305, H1413+117) is interpreted in terms of microlensing, even when equivalent X-ray continuum amplification is not observed. In order to i nterpret these observations, first we studied the effects of microlensing on quasars spectra, produced by straight fold caustic crossing over standard relativistic accretion disk. The disk emission was analyzed using the ray tracing method, considering Schwarzschild and Kerr metrics. When the emission is separated in two regions (an inner disk corresponding to the Fe K$alpha$ line and an outer annulus corresponding to the continuum, or vice-versa) we find microlensing events which enhance the Fe K$alpha$ line without noticeable amplification of the X-ray continuum, but only during a limited time interval. Continuum amplification is expected if a complete microlensing event is monitored. Second, we studied a more realistic case of amplification by caustic magnification pattern. In this case we could satisfactorily explain the observations if the Fe K$alpha$ line is emitted from the innermost part of the accretion disk, while the continuum is emitted from a larger region. Also, we studied the chromatic effects of microlensing, finding that the radial distribution of temperature in the accretion disk, combined with microlensing itself, can induce wavelength dependent variability of $sim$ 30% for microlenses with very small masses. All these results show that X-ray monitoring of gravitational lenses is a well suited method for studying of the innermost structure of AGN accretion disks.
We report on the results of detailed X-ray spectroscopy of the Fe K region in the Seyfert 1 galaxy NGC 3783 from five ~170 ks observations with the Chandra high energy gratings. Monitoring was conducted over an interval of ~125 days in 2001. The comb ined data constitute the highest signal-to-noise Fe K spectrum having the best velocity resolution in the Fe K band to date (FWHM ~1860 km/s). The data show a resolved Fe K line core with a center energy of 6.397 +/- 0.003 keV, consistent with an origin in neutral or lowly ionized Fe, located between the BLR and NLR, as found by Kaspi et al. (2002). We also find that excess flux around the base of the Fe K line core can be modeled with either a Compton scattering ``shoulder or an emission line from a relativistic accretion disk, having an inclination angle of 11 degrees or less. This disk line model is as good as a Compton-shoulder model for the base of the Fe K line core. In the latter model, the column density is 7.5 [+2.7,-0.6] x 10^{23} cm^{-2}, which corresponds to a Thomson optical depth of ~0.60. An intrinsic width of 1500 [+460,-340] km/s FWHM is still required in this model. Moreover, more complicated scenarios involving both a Compton-shoulder and a disk line cannot be ruled out. We confirm an absorption feature due to He-like Fe (FWHM = 6405 [+5020,-2670] km/s), found in previous studies.
122 - X. W. Shu 2010
We present the analysis of an XMM observation of the Seyfert galaxy NGC 2992. The source was found in its highest level of X-ray activity yet detected, a factor $sim 23.5$ higher in 2--10 keV flux than the historical minimum. NGC 2992 is known to exh ibit X-ray flaring activity on timescales of days to weeks, and the XMM data provide at least factor of $sim 3$ better spectral resolution in the Fe K band than any previously measured flaring X-ray state. We find that there is a broad feature in the sim 5-7 keV band which could be interpreted as a relativistic Fe K$alpha$ emission line. Its flux appears to have increased in tandem with the 2--10 keV continuum when compared to a previous Suzaku observation when the continuum was a factor of $sim 8$ lower than that during the XMM observation. The XMM data are consistent with the general picture that increased X-ray activity and corresponding changes in the Fe K$alpha$ line emission occur in the innermost regions of the putative accretion disk. This behavior contrasts with the behavior of other AGN in which the Fe K$alpha$ line does not respond to variability in the X-ray.
407 - J. M. Miller 2005
In X-ray binaries, the frequencies revealed in X-ray quasi-periodic oscillations (QPOs) are often interpreted as characteristic frequencies in the inner accretion disk, though the exact oscillation mechanism is unknown at present. Broadened Fe K-alph a lines are also excellent diagnostics of the inner accretion flow, if their broadening is indeed due to inner disk reflection. Herein, we present two cases where the flux and equivalent width of the Fe K-alpha emission lines in spectra of the Galactic black hole GRS 1915+105 vary with the phase of strong 1 Hz and 2 Hz QPOs in the X-ray flux. These results provide strong evidence that both QPOs and the Fe-alpha lines originate in the inner disk. If the 1 Hz QPO is only a Keplerian orbital frequency, the QPO comes from a distance of 84 +/- 26 R_Schw from the black hole; the 2 Hz QPO implies a radius of 50 +/- 15 R_Schw. At these radii, relativistic shaping of a disk line is inevitable. Moreover, the link holds in radio-bright and radio-faint phases, signaling that in systems like GRS 1915+105, the Fe K-alpha line is a disk line and not a jet line as per SS 433. A particularly interesting possibility is that a stable warp in the inner disk, e.g. due to Lense-Thirring precession, may produce the observed QPOs and line modulations. More broadly, the FeK-QPO link provides an unprecedented mechanism for revealing the inner accretion flow and relativistic regime in accreting systems, in that it gives two measures of radius: for a given disk QPO model, the frequency translates into a specific radius, and relativistic line models yield radii directly.
87 - J. M. Miller 2002
We observed the Galactic black hole Cygnus X-1 with the Chandra High Energy Transmission Grating Spectrometer for 30 kiloseconds on 4 January, 2001. The source was in an intermediate state, with a flux that was approximately twice that commonly obser ved in its persistent low/hard state. Our best-fit model for the X-ray spectrum includes narrow Gaussian emission line (E = 6.415 +/- 0.007 keV, FWHM = 80 (+28, -19) eV, W = 16 (+3, -2) eV) and broad line (E = 5.82 (+0.06, -0.07) keV, FWHM = 1.9 (+0.5, -0.3) keV, W = 140 (+70, -40) eV) components, and a smeared edge at 7.3 +/- 0.2 keV (tau ~ 1.0). The broad line profile is not as strongly skewed as those observed in some Seyfert galaxies. We interpret these features in terms of an accretion disk with irradiation of the inner disk producing a broad Fe K-alpha emission line and edge, and irradiation of the outer disk producing a narrow Fe K-alpha emission line. The broad line is likely shaped predominantly by Doppler shifts and gravitational effects, and to a lesser degree by Compton scattering due to reflection. We discuss the underlying continuum X-ray spectrum and these line features in the context of diagnosing the accretion flow geometry in Cygnus X-1 and other Galactic black holes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا