ترغب بنشر مسار تعليمي؟ اضغط هنا

Invariance and the twisted Chern character : a case study

101   0   0.0 ( 0 )
 نشر من قبل Debashish Goswami
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English
 تأليف Debashish Goswami




اسأل ChatGPT حول البحث

We give details of the proof of the remark made in cite{G2} that the Chern characters of the canonical generators on the K homology of the quantum group $SU_q(2)$ are not invariant under the natural $SU_q(2)$ coaction. Furthermore, the conjecture made in cite{G2} about the nontriviality of the twisted Chern character coming from an odd equivariant spectral triple on $SU_q(2)$ is settled in the affirmative.



قيم البحث

اقرأ أيضاً

101 - A. Carey , A. Rennie , F. Sukochev 2014
We study notions of measurability for singular traces, and characterise universal measurability for operators in Dixmier ideals. This measurability result is then applied to improve on the various proofs of Connes identification of the Hochschild cla ss of the Chern character of Dixmier summable spectral triples. The measurability results show that the identification of the Hochschild class is independent of the choice of singular trace. As a corollary we obtain strong information on the asymptotics of the eigenvalues of operators naturally associated to spectral triples (A,H,D) and Hochschild cycles for A.
We compute the Chern-Connes character (a map from the $K$-theory of a C$^*$-algebra under the action of a Lie group to the cohomology of its Lie algebra) for the $L^2$-norm closure of the algebra of all classical zero-order pseudodifferential operato rs on the sphere under the canonical action of ${rm SO}(3)$. We show that its image is $mathbb{R}$ if the trace is the integral of the principal symbol.
We define a map of simplicial presheaves, the Chern character, that assigns to every sequence of composable non connection preserving isomorphisms of vector bundles with holomorphic connections an appropriate sequence of holomorphic forms. We apply t his Chern character map to the Cech nerve of a good cover of a complex manifold and assemble the data by passing to the totalization to obtain a map of simplicial sets. In simplicial degree 0, this map gives a formula for the Chern character of a bundle in terms of the clutching functions. In simplicial degree 1, this map gives a formula for the Chern character of bundle maps. In each simplicial degree beyond 1, these invariants, defined in terms of the transition functions, govern the compatibilities between the invariants assigned in previous simplicial degrees. In addition to this, we also apply this Chern character to complex Lie groupoids to obtain invariants of bundles on them in terms of the simplicial data. For group actions, these invariants land in suitable complexes calculating various Hodge equivariant cohomologies. In contrast, the de Rham Chern character formula involves additional terms and will appear in a sequel paper. In a sense, these constructions build on a point of view of characteristic classes in terms of transition functions advocated by Raoul Bott, which has been addressed over the years in various forms and degrees, concerning the existence of formulae for the Hodge and de Rham characteristic classes of bundles solely in terms of their clutching functions.
125 - Ilya Shapiro 2019
We examine Hopf cyclic cohomology in the same context as the analysis of the geometry of loop spaces $LX$ in derived algebraic geometry and the resulting close relationship between $S^1$-equivariant quasi-coherent sheaves on $LX$ and $D_X$-modules. F urthermore, the Hopf setting serves as a toy case for the categorification of Chern character theory. More precisely, this examination naturally leads to a definition of mixed anti-Yetter-Drinfeld contramodules which reduces to that of the usual mixed complexes for the trivial Hopf algebra and generalizes the notion of stable anti-Yetter-Drinfeld contramodules that have thus far served as the coefficients for Hopf-cyclic theories. The cohomology is then obtained as a $Hom$ in this dg-category between a Chern character object associated to an algebra and an arbitrary coefficient mixed anti-Yetter-Drinfeld contramodule.
After an overview of noncommutative differential calculus, we construct parts of it explicitly and explain why this construction agrees with a fuller version obtained from the theory of operads.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا