ﻻ يوجد ملخص باللغة العربية
We compute the Chern-Connes character (a map from the $K$-theory of a C$^*$-algebra under the action of a Lie group to the cohomology of its Lie algebra) for the $L^2$-norm closure of the algebra of all classical zero-order pseudodifferential operators on the sphere under the canonical action of ${rm SO}(3)$. We show that its image is $mathbb{R}$ if the trace is the integral of the principal symbol.
We introduce a new method for studying the Baum-Connes conjecture, which we call the direct splitting method. The method can simplify and clarify proofs of some of the known cases of the conjecture. In a separate paper, with J. Brodzki, E. Guentner a
We define and study an analogue of the Baum-Connes assembly map for complex semisimple quantum groups, that is, Drinfeld doubles of $ q $-deformations of compact semisimple Lie groups. Our starting point is the deformation picture of the Baum-Conne
Let $A$ be a graded C*-algebra. We characterize Kasparovs K-theory group $hat{K}_0(A)$ in terms of graded *-homomorphisms by proving a general converse to the functional calculus theorem for self-adjoint regular operators on graded Hilbert modules. A
Given a separable unital C*-algebra A, let E denote the Banach-space completion of the A-valued Schwartz space on Rn with norm induced by the A-valued inner product $<f,g>=int f(x)^*g(x) dx$. The assignment of the pseudodifferential operator B=b(x,D)
We offer a short proof of Connes Hochschild class of the Chern character formula for non-unital semifinite spectral triples. The proof is simple due to its reliance on the authors extensive work on a refined version of the local index formula, and th