ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal variational quantum simulation on a superconducting quantum processor

233   0   0.0 ( 0 )
 نشر من قبل Shang-Shu Li
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Solving finite-temperature properties of quantum many-body systems is generally challenging to classical computers due to their high computational complexities. In this article, we present experiments to demonstrate a hybrid quantum-classical simulation of thermal quantum states. By combining a classical probabilistic model and a 5-qubit programmable superconducting quantum processor, we prepare Gibbs states and excited states of Heisenberg XY and XXZ models with high fidelity and compute thermal properties including the variational free energy, energy, and entropy with a small statistical error. Our approach combines the advantage of classical probabilistic models for sampling and quantum co-processors for unitary transformations. We show that the approach is scalable in the number of qubits, and has a self-verifiable feature, revealing its potentials in solving large-scale quantum statistical mechanics problems on near-term intermediate-scale quantum computers.



قيم البحث

اقرأ أيضاً

Quantum emulators, owing to their large degree of tunability and control, allow the observation of fine aspects of closed quantum many-body systems, as either the regime where thermalization takes place or when it is halted by the presence of disorde r. The latter, dubbed many-body localization (MBL) phenomenon, describes the non-ergodic behavior that is dynamically identified by the preservation of local information and slow entanglement growth. Here, we provide a precise observation of this same phenomenology in the case the onsite energy landscape is not disordered, but rather linearly varied, emulating the Stark MBL. To this end, we construct a quantum device composed of thirty-two superconducting qubits, faithfully reproducing the relaxation dynamics of a non-integrable spin model. Our results describe the real-time evolution at sizes that surpass what is currently attainable by exact simulations in classical computers, signaling the onset of quantum advantage, thus bridging the way for quantum computation as a resource for solving out-of-equilibrium many-body problems.
The required precision to perform quantum simulations beyond the capabilities of classical computers imposes major experimental and theoretical challenges. Here, we develop a characterization technique to benchmark the implementation precision of a s pecific quantum simulation task. We infer all parameters of the bosonic Hamiltonian that governs the dynamics of excitations in a two-dimensional grid of nearest-neighbour coupled superconducting qubits. We devise a robust algorithm for identification of Hamiltonian parameters from measured times series of the expectation values of single-mode canonical coordinates. Using super-resolution and denoising methods, we first extract eigenfrequencies of the governing Hamiltonian from the complex time domain measurement; next, we recover the eigenvectors of the Hamiltonian via constrained manifold optimization over the orthogonal group. For five and six coupled qubits, we identify Hamiltonian parameters with sub-MHz precision and construct a spatial implementation error map for a grid of 27 qubits. Our approach enables us to distinguish and quantify the effects of state preparation and measurement errors and show that they are the dominant sources of errors in the implementation. Our results quantify the implementation accuracy of analog dynamics and introduce a diagnostic toolkit for understanding, calibrating, and improving analog quantum processors.
In the near-term, hybrid quantum-classical algorithms hold great potential for outperforming classical approaches. Understanding how these two computing paradigms work in tandem is critical for identifying areas where such hybrid algorithms could pro vide a quantum advantage. In this work, we study a QAOA-based quantum optimization algorithm by implementing the Variational Quantum Factoring (VQF) algorithm. We execute experimental demonstrations using a superconducting quantum processor and investigate the trade-off between quantum resources (number of qubits and circuit depth) and the probability that a given biprime is successfully factored. In our experiments, the integers 1099551473989, 3127, and 6557 are factored with 3, 4, and 5 qubits, respectively, using a QAOA ansatz with up to 8 layers and we are able to identify the optimal number of circuit layers for a given instance to maximize success probability. Furthermore, we demonstrate the impact of different noise sources on the performance of QAOA and reveal the coherent error caused by the residual ZZ-coupling between qubits as a dominant source of error in the superconducting quantum processor.
Quantum algorithms for Noisy Intermediate-Scale Quantum (NISQ) machines have recently emerged as new promising routes towards demonstrating near-term quantum advantage (or supremacy) over classical systems. In these systems samples are typically draw n from probability distributions which --- under plausible complexity-theoretic conjectures --- cannot be efficiently generated classically. Rather than first define a physical system and then determine computational features of the output state, we ask the converse question: given direct access to the quantum state, what features of the generating system can we efficiently learn? In this work we introduce the Variational Quantum Unsampling (VQU) protocol, a nonlinear quantum neural network approach for verification and inference of near-term quantum circuits outputs. In our approach one can variationally train a quantum operation to unravel the action of an unknown unitary on a known input state; essentially learning the inverse of the black-box quantum dynamics. While the principle of our approach is platform independent, its implementation will depend on the unique architecture of a specific quantum processor. Here, we experimentally demonstrate the VQU protocol on a quantum photonic processor. Alongside quantum verification, our protocol has broad applications; including optimal quantum measurement and tomography, quantum sensing and imaging, and ansatz validation.
Quantum many-body systems display rich phase structure in their low-temperature equilibrium states. However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamic al phases that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC). Concretely, dynamical phases can be defined in periodically driven many-body localized systems via the concept of eigenstate order. In eigenstate-ordered phases, the entire many-body spectrum exhibits quantum correlations and long-range order, with characteristic signatures in late-time dynamics from all initial states. It is, however, challenging to experimentally distinguish such stable phases from transient phenomena, wherein few select states can mask typical behavior. Here we implement a continuous family of tunable CPHASE gates on an array of superconducting qubits to experimentally observe an eigenstate-ordered DTC. We demonstrate the characteristic spatiotemporal response of a DTC for generic initial states. Our work employs a time-reversal protocol that discriminates external decoherence from intrinsic thermalization, and leverages quantum typicality to circumvent the exponential cost of densely sampling the eigenspectrum. In addition, we locate the phase transition out of the DTC with an experimental finite-size analysis. These results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا