ﻻ يوجد ملخص باللغة العربية
Gradient descent is arguably one of the most popular online optimization methods with a wide array of applications. However, the standard implementation where agents simultaneously update their strategies yields several undesirable properties; strategies diverge away from equilibrium and regret grows over time. In this paper, we eliminate these negative properties by introducing a different implementation to obtain finite regret via arbitrary fixed step-size. We obtain this surprising property by having agents take turns when updating their strategies. In this setting, we show that an agent that uses gradient descent obtains bounded regret -- regardless of how their opponent updates their strategies. Furthermore, we show that in adversarial settings that agents strategies are bounded and cycle when both are using the alternating gradient descent algorithm.
Smooth minimax games often proceed by simultaneous or alternating gradient updates. Although algorithms with alternating updates are commonly used in practice for many applications (e.g., GAN training), the majority of existing theoretical analyses f
Many recent AI architectures are inspired by zero-sum games, however, the behavior of their dynamics is still not well understood. Inspired by this, we study standard gradient descent ascent (GDA) dynamics in a specific class of non-convex non-concav
Stochastic Gradient Descent (SGD) plays a central role in modern machine learning. While there is extensive work on providing error upper bound for SGD, not much is known about SGD error lower bound. In this paper, we study the convergence of constan
Two of the most prominent algorithms for solving unconstrained smooth games are the classical stochastic gradient descent-ascent (SGDA) and the recently introduced stochastic consensus optimization (SCO) (Mescheder et al., 2017). SGDA is known to con
The need for fast and robust optimization algorithms are of critical importance in all areas of machine learning. This paper treats the task of designing optimization algorithms as an optimal control problem. Using regret as a metric for an algorithm