ﻻ يوجد ملخص باللغة العربية
Smooth minimax games often proceed by simultaneous or alternating gradient updates. Although algorithms with alternating updates are commonly used in practice for many applications (e.g., GAN training), the majority of existing theoretical analyses focus on simultaneous algorithms for convenience of analysis. In this paper, we study alternating gradient descent-ascent (Alt-GDA) in minimax games and show that Alt-GDA is superior to its simultaneous counterpart (Sim-GDA) in many settings. In particular, we prove that Alt-GDA achieves a near-optimal local convergence rate for strongly convex-strongly concave (SCSC) problems while Sim-GDA converges at a much slower rate. To our knowledge, this is the emph{first} result of any setting showing that Alt-GDA converges faster than Sim-GDA by more than a constant. We further prove that the acceleration effect of alternating updates remains when the minimax problem has only strong concavity in the dual variables. Lastly, we adapt the theory of integral quadratic constraints and show that Alt-GDA attains the same rate emph{globally} for a class of SCSC minimax problems. Numerical experiments on quadratic minimax games validate our claims. Empirically, we demonstrate that alternating updates speed up GAN training significantly and the use of optimism only helps for simultaneous algorithms.
Epoch gradient descent method (a.k.a. Epoch-GD) proposed by Hazan and Kale (2011) was deemed a breakthrough for stochastic strongly convex minimization, which achieves the optimal convergence rate of $O(1/T)$ with $T$ iterative updates for the {it ob
Two of the most prominent algorithms for solving unconstrained smooth games are the classical stochastic gradient descent-ascent (SGDA) and the recently introduced stochastic consensus optimization (SCO) (Mescheder et al., 2017). SGDA is known to con
The need for fast and robust optimization algorithms are of critical importance in all areas of machine learning. This paper treats the task of designing optimization algorithms as an optimal control problem. Using regret as a metric for an algorithm
Stochastic gradient descent (SGD) is a popular and efficient method with wide applications in training deep neural nets and other nonconvex models. While the behavior of SGD is well understood in the convex learning setting, the existing theoretical
We study the reinforcement learning problem for discounted Markov Decision Processes (MDPs) under the tabular setting. We propose a model-based algorithm named UCBVI-$gamma$, which is based on the emph{optimism in the face of uncertainty principle} a