ﻻ يوجد ملخص باللغة العربية
Stochastic Gradient Descent (SGD) plays a central role in modern machine learning. While there is extensive work on providing error upper bound for SGD, not much is known about SGD error lower bound. In this paper, we study the convergence of constant step-size SGD. We provide error lower bound of SGD for potentially non-convex objective functions with Lipschitz gradients. To our knowledge, this is the first analysis for SGD error lower bound without the strong convexity assumption. We use experiments to illustrate our theoretical results.
Despite the strong theoretical guarantees that variance-reduced finite-sum optimization algorithms enjoy, their applicability remains limited to cases where the memory overhead they introduce (SAG/SAGA), or the periodic full gradient computation they
Conditional Stochastic Optimization (CSO) covers a variety of applications ranging from meta-learning and causal inference to invariant learning. However, constructing unbiased gradient estimates in CSO is challenging due to the composition structure
Motivated by broad applications in reinforcement learning and machine learning, this paper considers the popular stochastic gradient descent (SGD) when the gradients of the underlying objective function are sampled from Markov processes. This Markov
We present a strikingly simple proof that two rules are sufficient to automate gradient descent: 1) dont increase the stepsize too fast and 2) dont overstep the local curvature. No need for functional values, no line search, no information about the
Epoch gradient descent method (a.k.a. Epoch-GD) proposed by Hazan and Kale (2011) was deemed a breakthrough for stochastic strongly convex minimization, which achieves the optimal convergence rate of $O(1/T)$ with $T$ iterative updates for the {it ob