ﻻ يوجد ملخص باللغة العربية
We have studied the dependence of the AGN nuclear radio (1.4 GHz) luminosity on both the AGN 2-10 keV X-ray and the host-galaxy K-band luminosity. A complete sample of 1268 X-ray selected AGN (both type 1 and type 2) has been used, which is the largest catalogue of AGN belonging to statistically well defined samples where radio, X and K band information exists. At variance with previous studies, radio upper limits have been statistically taken into account using a Bayesian Maximum Likelihood fitting method. It resulted that a good fit is obtained assuming a plane in the 3D L_R-L_X-L_K space, namely logL_R= xi_X logL_X + xi_K logL_K + xi_0, having a ~1 dex wide (1 sigma) spread in radio luminosity. As already shown, no evidence of bimodality in the radio luminosity distribution was found and therefore any definition of radio loudness in AGN is arbitrary. Using scaling relations between the BH mass and the host galaxy K-band luminosity, we have also derived a new estimate of the BH fundamental plane (in the L_5GHz -L_X-M_BH space). Our analysis shows that previous measures of the BH fundamental plane are biased by ~0.8 dex in favor of the most luminous radio sources. Therefore, many AGN studies, where the BH fundamental plane is used to investigate how AGN regulate their radiative and mechanical luminosity as a function of the accretion rate, or many AGN/galaxy co-evolution models, where radio-feedback is computed using the AGN fundamental plane, should revise their conclusions.
We investigate the 1.4 GHz radio properties of 92 nearby (z<0.05) ultra hard X-ray selected Active Galactic Nuclei (AGN) from the Swift Burst Alert Telescope (BAT) sample. Through the ultra hard X-ray selection we minimise the biases against obscured
We put active galactic nuclei (AGNs) with low-mass black holes on the fundamental plane of black hole accretion---the plane that relates X-ray emission, radio emission, and mass of an accreting black hole---to test whether or not the relation is univ
We perform a detailed study of the location of brightest cluster galaxies (BCGs) on the fundamental plane of black hole (BH) accretion, which is an empirical correlation between a BH X-ray and radio luminosity and mass supported by theoretical models
We have determined the central velocity dispersion and surface brightness profiles for a sample of powerful radio galaxies in the redshift range 0.06<z<0.31, which were selected on the basis of their young radio source. The optical hosts follow the f
We studied the Active Galactic Nuclei (AGN) radio emission from a compilation of hard X-ray selected samples, all observed in the 1.4 GHz band. A total of more than 1600 AGN with 2-10 keV de-absorbed luminosities higher than 10^42 erg/s were used. Fo