ﻻ يوجد ملخص باللغة العربية
We put active galactic nuclei (AGNs) with low-mass black holes on the fundamental plane of black hole accretion---the plane that relates X-ray emission, radio emission, and mass of an accreting black hole---to test whether or not the relation is universal for both stellar-mass and supermassive black holes. We use new Chandra X-ray and Very Large Array radio observations of a sample of black holes with masses less than $10^{6.3} M_{scriptscriptstyle odot}$, which have the best leverage for determining whether supermassive black holes and stellar-mass black holes belong on the same plane. Our results suggest that the two different classes of black holes both belong on the same relation. These results allow us to conclude that the fundamental plane is suitable for use in estimating supermassive black hole masses smaller than $sim 10^7 M_{scriptscriptstyle odot}$, in testing for intermediate-mass black holes, and in estimating masses at high accretion rates.
We present an analysis of the fundamental plane of black hole accretion, an empirical correlation of the mass of a black hole ($M$), its 5 GHz radio continuum luminosity ($ u L_{ u}$), and its 2-10 keV X-ray power-law continuum luminosity ($L_X$). We
We investigate the 1.4 GHz radio properties of 92 nearby (z<0.05) ultra hard X-ray selected Active Galactic Nuclei (AGN) from the Swift Burst Alert Telescope (BAT) sample. Through the ultra hard X-ray selection we minimise the biases against obscured
We perform a detailed study of the location of brightest cluster galaxies (BCGs) on the fundamental plane of black hole (BH) accretion, which is an empirical correlation between a BH X-ray and radio luminosity and mass supported by theoretical models
We have studied the dependence of the AGN nuclear radio (1.4 GHz) luminosity on both the AGN 2-10 keV X-ray and the host-galaxy K-band luminosity. A complete sample of 1268 X-ray selected AGN (both type 1 and type 2) has been used, which is the large
Black hole accretion and jet production are areas of intensive study in astrophysics. Recent work has found a relation between radio luminosity, X-ray luminosity, and black hole mass. With the assumption that radio and X-ray luminosity are suitable p