ترغب بنشر مسار تعليمي؟ اضغط هنا

Tools for computing the AGN feedback: radio-loudness distribution and the kinetic luminosity function

109   0   0.0 ( 0 )
 نشر من قبل Fabio La Franca
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We studied the Active Galactic Nuclei (AGN) radio emission from a compilation of hard X-ray selected samples, all observed in the 1.4 GHz band. A total of more than 1600 AGN with 2-10 keV de-absorbed luminosities higher than 10^42 erg/s were used. For a sub-sample of about 50 zlsim 0.1 AGN it was possible to reach a ~80% fraction of radio detections and therefore, for the first time, it was possible to almost completely measure the probability distribution function of the ratio between the radio and the X-ray luminosity Rx=log[L(1.4)/Lx]. The probability distribution function of Rx was functionally fitted as dependent on the X-ray luminosity and redshift, P(Rx|Lx,z). It roughly spans over 6 decades (-7<Rx<-1), and does not show any sign of bi-modality. It resulted that the probability of finding large values of the Rx ratio increases with decreasing X-ray luminosities and (possibly) with increasing redshift. No statistical significant difference was found between the radio properties of the X-ray absorbed and unabsorbed AGN. The measure of the probability distribution function of Rx allowed us to compute the kinetic luminosity function and the kinetic energy density which, at variance with what assumed in many galaxy evolution models, is observed to decrease of about a factor of five at redshift below 0.5. About half of the kinetic energy density results to be produced by the more radio quiet (Rx<-4) AGN. In agreement with previous estimates, the AGN efficiency in converting the accreted mass energy into kinetic power is, on average, ~5x10-3.



قيم البحث

اقرأ أيضاً

140 - A. Bonchi 2012
We have studied the dependence of the AGN nuclear radio (1.4 GHz) luminosity on both the AGN 2-10 keV X-ray and the host-galaxy K-band luminosity. A complete sample of 1268 X-ray selected AGN (both type 1 and type 2) has been used, which is the large st catalogue of AGN belonging to statistically well defined samples where radio, X and K band information exists. At variance with previous studies, radio upper limits have been statistically taken into account using a Bayesian Maximum Likelihood fitting method. It resulted that a good fit is obtained assuming a plane in the 3D L_R-L_X-L_K space, namely logL_R= xi_X logL_X + xi_K logL_K + xi_0, having a ~1 dex wide (1 sigma) spread in radio luminosity. As already shown, no evidence of bimodality in the radio luminosity distribution was found and therefore any definition of radio loudness in AGN is arbitrary. Using scaling relations between the BH mass and the host galaxy K-band luminosity, we have also derived a new estimate of the BH fundamental plane (in the L_5GHz -L_X-M_BH space). Our analysis shows that previous measures of the BH fundamental plane are biased by ~0.8 dex in favor of the most luminous radio sources. Therefore, many AGN studies, where the BH fundamental plane is used to investigate how AGN regulate their radiative and mechanical luminosity as a function of the accretion rate, or many AGN/galaxy co-evolution models, where radio-feedback is computed using the AGN fundamental plane, should revise their conclusions.
Despite decades of study, it remains unclear whether there are distinct radio-loud and radio-quiet populations of quasi-stellar objects (QSOs). Early studies were limited by inhomogeneous QSO samples, inadequate sensitivity to probe the radio-quiet p opulation, and degeneracy between redshift and luminosity for flux-density-limited samples. Our new 6 GHz EVLA observations allow us for the first time to obtain nearly complete (97%) radio detections in a volume-limited color-selected sample of 179 QSOs more luminous than M_i = -23 from the Sloan Digital Sky Survey (SDSS) Data Release Seven in the narrow redshift range 0.2 < z < 0.3. The dramatic improvement in radio continuum sensitivity made possible with the new EVLA allows us, in 35 minutes of integration, to detect sources as faint as 20 microJy, or log[L_6 (W/Hz)] ~ 21.5 at z = 0.25, well below the radio luminosity, log[L_6 (W/Hz)] ~ 22.5, that separates star-forming galaxies from radio-loud active galactic nuclei (AGNs) driven by accretion onto a super-massive black hole. We calculate the radio luminosity function (RLF) for these QSOs using three constraints: (a) EVLA 6 GHz observations for log[L_6 (W/Hz)] < 23.5, (b) NRAO-VLA Sky Survey (NVSS) observations for log[L_6 (W/Hz)] > 23.5, and (c) the total number of SDSS QSOs in our volume-limited sample. We show that the RLF can be explained as a superposition of two populations, dominated by AGNs at the bright end and star formation in the QSO host galaxies at the faint end.
This paper presents a new grid-based method for investigating the evolution of the steep-spectrum radio luminosity function, with the aim of quantifying the high-redshift cut-off suggested by previous work. To achieve this, the Combined EIS-NVSS Surv ey of Radio Sources (CENSORS) has been developed; this is a 1.4 GHz radio survey, containing 135 sources complete to a flux density of 7.2 mJy, selected from the NRAO VLA Sky Survey (NVSS) over 6 deg^2 of the ESO Imaging Survey (EIS) Patch D. The sample is currently 73% spectroscopically complete, with the remaining redshifts estimated via the K-z or I-z magnitude-redshift relation. CENSORS is combined with additional radio data from the Parkes All-Sky, Parkes Selected Regions, Hercules and VLA COSMOS samples to provide comprehensive coverage of the radio power vs. redshift plane. The redshift distributions of these samples, together with radio source count determinations, and measurements of the local luminosity function, provide the input to the fitting process. The modelling reveals clear declines, at > 3sigma significance, in comoving density at z > 0.7 for lower luminosity sources (log P = 25-26); these turnovers are still present at log P > 27, but move to z > 3, suggesting a luminosity-dependent evolution of the redshift turnover, similar to the `cosmic downsizing seen for other AGN populations. These results are shown to be robust to the estimated redshift errors and to increases in the spectral index for the highest redshift sources. Analytic fits to the best-fitting steep spectrum grid are provided so that the results presented here can be easily accessed by the reader, as well as allowing plausible extrapolations outside of the regions covered by the input datasets
For understanding the diversity of jetted active galactic nuclei (AGN) and especially the puzzling wide range in their radio-loudness, it is important to understand what role the magnetic fields play in setting the power of relativistic jets in AGN. We have performed multi-frequency (4-24 GHz) VLBA phase-referencing observations of the radio-intermediate quasar III Zw 2 using three nearby calibrators as reference sources to estimate jet magnetic flux by measuring the core-shift effect. By combining the self-referencing core-shift of each calibrator with the phase-referencing core-shifts, we obtained an upper limit of 0.16 mas for the core-shift between 4 and 24 GHz in III Zw 2. By assuming equipartition between magnetic and particle energy densities and adopting the flux-freezing approximation, we further estimated the upper limit for both magnetic field strength and poloidal magnetic flux threading the black hole. We find that the upper limit to the measured magnetic flux is smaller by at least a factor of five compared to the value predicted by the magnetically arrested disk (MAD) model. An alternative way to derive the jet magnetic field strength from the turnover of the synchrotron spectrum leads to an even smaller upper limit. Hence, the central engine of III Zw 2 has not reached the MAD state, which could explain why it has failed to develop a powerful jet, even though the source harbours a fast-spinning black hole. However, it generates an intermittent jet, which is possibly triggered by small scale magnetic field fluctuations as predicted by the magnetic flux paradigm of Sikora & Begelman (2013). We propose here that combining black hole spin measurements with magnetic field measurements from the VLBI core-shift observations of AGN over a range of jet powers could provide a strong test for the dominant factor setting the jet power relative to the accretion power available.
The GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) is a radio continuum survey at 76-227 MHz of the entire southern sky (Declination $<+30deg$) with an angular resolution of $approx 2$ arcmin. In this paper, we combine GLEAM dat a with optical spectroscopy from the 6dF Galaxy Survey to construct a sample of 1,590 local (median $z approx 0.064$) radio sources with $S_{200,mathrm{MHz}} > 55$ mJy across an area of $approx 16,700~mathrm{deg}^{2}$. From the optical spectra, we identify the dominant physical process responsible for the radio emission from each galaxy: 73 per cent are fuelled by an active galactic nucleus (AGN) and 27 per cent by star formation. We present the local radio luminosity function for AGN and star-forming galaxies at 200 MHz and characterise the typical radio spectra of these two populations between 76 MHz and $sim 1$ GHz. For the AGN, the median spectral index between 200 MHz and $sim 1$ GHz, $alpha_{mathrm{high}}$, is $-0.600 pm 0.010$ (where $S propto u^{alpha}$) and the median spectral index within the GLEAM band, $alpha_{mathrm{low}}$, is $-0.704 pm 0.011$. For the star-forming galaxies, the median value of $alpha_{mathrm{high}}$ is $-0.650 pm 0.010$ and the median value of $alpha_{mathrm{low}}$ is $-0.596 pm 0.015$. Among the AGN population, flat-spectrum sources are more common at lower radio luminosity, suggesting the existence of a significant population of weak radio AGN that remain core-dominated even at low frequencies. However, around 4 per cent of local radio AGN have ultra-steep radio spectra at low frequencies ($alpha_{mathrm{low}} < -1.2$). These ultra-steep-spectrum sources span a wide range in radio luminosity, and further work is needed to clarify their nature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا