ﻻ يوجد ملخص باللغة العربية
We investigate the 1.4 GHz radio properties of 92 nearby (z<0.05) ultra hard X-ray selected Active Galactic Nuclei (AGN) from the Swift Burst Alert Telescope (BAT) sample. Through the ultra hard X-ray selection we minimise the biases against obscured or Compton-thick AGN as well as confusion with emission derived from star formation that typically affect AGN samples selected from the UV, optical and infrared wavelengths. We find that all the objects in our sample of nearby, ultra-hard X-ray selected AGN are radio quiet; 83% of the objects are classed as high-excitation galaxies (HEGs) and 17% as low-excitation galaxies (LEGs). While these low-z BAT sources follow the radio--far-infrared correlation in a similar fashion to star forming galaxies, our analysis finds that there is still significant AGN contribution in the observed radio emission from these radio quiet AGN. In fact, the majority of our BAT sample occupy the same X-ray--radio fundamental plane as have been observed in other samples, which include radio loud AGN --- evidence that the observed radio emission (albeit weak) is connected to the AGN accretion mechanism, rather than star formation.
We have studied the dependence of the AGN nuclear radio (1.4 GHz) luminosity on both the AGN 2-10 keV X-ray and the host-galaxy K-band luminosity. A complete sample of 1268 X-ray selected AGN (both type 1 and type 2) has been used, which is the large
We put active galactic nuclei (AGNs) with low-mass black holes on the fundamental plane of black hole accretion---the plane that relates X-ray emission, radio emission, and mass of an accreting black hole---to test whether or not the relation is univ
High magnetic fields are a distinguishing feature of neutron stars and the existence of sources (the soft gamma repeaters and the anomalous X-ray pulsars) hosting an ultra-magnetized neutron star (or magnetar) has been recognized in the past few deca
We have determined the central velocity dispersion and surface brightness profiles for a sample of powerful radio galaxies in the redshift range 0.06<z<0.31, which were selected on the basis of their young radio source. The optical hosts follow the f
The fundamental plane for black hole activity constitutes a tight correlation between jet power, X-ray luminosity, and black hole mass. Under the assumption that a Blandford-Znajek-type mechanism, which relies on black hole spin, contributes non-negl