ﻻ يوجد ملخص باللغة العربية
Perpetual voting was recently introduced as a framework for long-term collective decision making. In this framework, we consider a sequence of subsequent approval-based elections and try to achieve a fair overall outcome. To achieve fairness over time, perpetual voting rules take the history of previous decisions into account and identify voters that were dissatisfied with previous decisions. In this paper, we look at perpetual voting rules from an axiomatic perspective and study two main questions. First, we ask how simple such rules can be while still meeting basic desiderata. For two simple but natural classes, we fully characterize the axiomatic possibilities. Second, we ask how proportionality can be formalized in perpetual voting. We study proportionality on simple profiles that are equivalent to the apportionment setting and show that lower and upper quota axioms can be used to distinguish (and sometimes characterize) perpetual voting rules. Furthermore, we show a surprising connection between a perpetual rule called Perpetual Consensus and Freges apportionment method.
Explaining the decisions of black-box models has been a central theme in the study of trustworthy ML. Numerous measures have been proposed in the literature; however, none of them have been able to adopt a provably causal take on explainability. Buil
Information delivery in a network of agents is a key issue for large, complex systems that need to do so in a predictable, efficient manner. The delivery of information in such multi-agent systems is typically implemented through routing protocols th
We propose a new single-winner election method (Schulze method) and prove that it satisfies many academic criteria (e.g. monotonicity, reversal symmetry, resolvability, independence of clones, Condorcet criterion, k-consistency, polynomial runtime).
Proof-of-work blockchains reward each miner for one completed block by an amount that is, in expectation, proportional to the number of hashes the miner contributed to the mining of the block. Is this proportional allocation rule optimal? And in what
We analyse strategic, complete information, sequential voting with ordinal preferences over the alternatives. We consider several voting mechanisms: plurality voting and approval voting with deterministic or uniform tie-breaking rules. We show that s