ﻻ يوجد ملخص باللغة العربية
We analyse strategic, complete information, sequential voting with ordinal preferences over the alternatives. We consider several voting mechanisms: plurality voting and approval voting with deterministic or uniform tie-breaking rules. We show that strategic voting in these voting procedures may lead to a very undesirable outcome: Condorcet winning alternative might be rejected, Condorcet losing alternative might be elected, and Pareto dominated alternative might be elected. These undesirable phenomena occur already with four alternatives and a small number of voters. For the case of three alternatives we present positive and negative results.
We discuss voting scenarios in which the set of voters (agents) and the set of alternatives are the same; that is, voters select a single representative from among themselves. Such a scenario happens, for instance, when a committee selects a chairper
Recently, we introduced in arXiv:1105.2434 a model for product adoption in social networks with multiple products, where the agents, influenced by their neighbours, can adopt one out of several alternatives. We identify and analyze here four types of
Justified representation (JR) is a standard notion of representation in multiwinner approval voting. Not only does a JR committee always exist, but previous work has also shown through experiments that the JR condition can typically be fulfilled by g
In the context of computational social choice, we study voting methods that assign a set of winners to each profile of voter preferences. A voting method satisfies the property of positive involvement (PI) if for any election in which a candidate x w
We propose a new single-winner election method (Schulze method) and prove that it satisfies many academic criteria (e.g. monotonicity, reversal symmetry, resolvability, independence of clones, Condorcet criterion, k-consistency, polynomial runtime).