ترغب بنشر مسار تعليمي؟ اضغط هنا

An Axiomatic Approach to Block Rewards

120   0   0.0 ( 0 )
 نشر من قبل Xi Chen
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Proof-of-work blockchains reward each miner for one completed block by an amount that is, in expectation, proportional to the number of hashes the miner contributed to the mining of the block. Is this proportional allocation rule optimal? And in what sense? And what other rules are possible? In particular, what are the desirable properties that any good allocation rule should satisfy? To answer these questions, we embark on an axiomatic theory of incentives in proof-of-work blockchains at the time scale of a single block. We consider desirable properties of allocation rules including: symmetry; budget balance (weak or strong); sybil-proofness; and various grades of collusion-proofness. We show that Bitcoins proportional allocation rule is the unique allocation rule satisfying a certain system of properties, but this does not hold for slightly weaker sets of properties, or when the miners are not risk-neutral. We also point out that a rich class of allocation rules can be approximately implemented in a proof-of-work blockchain.



قيم البحث

اقرأ أيضاً

125 - Omer Lev 2016
Information delivery in a network of agents is a key issue for large, complex systems that need to do so in a predictable, efficient manner. The delivery of information in such multi-agent systems is typically implemented through routing protocols th at determine how information flows through the network. Different routing protocols exist each with its own benefits, but it is generally unclear which properties can be successfully combined within a given algorithm. We approach this problem from the axiomatic point of view, i.e., we try to establish what are the properties we would seek to see in such a system, and examine the different properties which uniquely define common routing algorithms used today. We examine several desirable properties, such as robustness, which ensures adding nodes and edges does not change the routing in a radical, unpredictable ways; and properties that depend on the operating environment, such as an economic model, where nodes choose their paths based on the cost they are charged to pass information to the next node. We proceed to fully characterize minimal spanning tree, shortest path, and weakest link routing algorithms, showing a tight set of axioms for each.
Complex black-box machine learning models are regularly used in critical decision-making domains. This has given rise to several calls for algorithmic explainability. Many explanation algorithms proposed in literature assign importance to each featur e individually. However, such explanations fail to capture the joint effects of sets of features. Indeed, few works so far formally analyze high-dimensional model explanations. In this paper, we propose a novel high dimension model explanation method that captures the joint effect of feature subsets. We propose a new axiomatization for a generalization of the Banzhaf index; our method can also be thought of as an approximation of a black-box model by a higher-order polynomial. In other words, this work justifies the use of the generalized Banzhaf index as a model explanation by showing that it uniquely satisfies a set of natural desiderata and that it is the optimal local approximation of a black-box model. Our empirical evaluation of our measure highlights how it manages to capture desirable behavior, whereas other measures that do not satisfy our axioms behave in an unpredictable manner.
105 - Martin Lackner , Jan Maly 2021
Perpetual voting was recently introduced as a framework for long-term collective decision making. In this framework, we consider a sequence of subsequent approval-based elections and try to achieve a fair overall outcome. To achieve fairness over tim e, perpetual voting rules take the history of previous decisions into account and identify voters that were dissatisfied with previous decisions. In this paper, we look at perpetual voting rules from an axiomatic perspective and study two main questions. First, we ask how simple such rules can be while still meeting basic desiderata. For two simple but natural classes, we fully characterize the axiomatic possibilities. Second, we ask how proportionality can be formalized in perpetual voting. We study proportionality on simple profiles that are equivalent to the apportionment setting and show that lower and upper quota axioms can be used to distinguish (and sometimes characterize) perpetual voting rules. Furthermore, we show a surprising connection between a perpetual rule called Perpetual Consensus and Freges apportionment method.
When training a predictive model over medical data, the goal is sometimes to gain insights about a certain disease. In such cases, it is common to use feature importance as a tool to highlight significant factors contributing to that disease. As ther e are many existing methods for computing feature importance scores, understanding their relative merits is not trivial. Further, the diversity of scenarios in which they are used lead to different expectations from the feature importance scores. While it is common to make the distinction between local scores that focus on individual predictions and global scores that look at the contribution of a feature to the model, another important division distinguishes model scenarios, in which the goal is to understand predictions of a given model from natural scenarios, in which the goal is to understand a phenomenon such as a disease. We develop a set of axioms that represent the properties expected from a feature importance function in the natural scenario and prove that there exists only one function that satisfies all of them, the Marginal Contribution Feature Importance (MCI). We analyze this function for its theoretical and empirical properties and compare it to other feature importance scores. While our focus is the natural scenario, we suggest that our axiomatic approach could be carried out in other scenarios too.
Motivated by applications to online advertising and recommender systems, we consider a game-theoretic model with delayed rewards and asynchronous, payoff-based feedback. In contrast to previous work on delayed multi-armed bandits, we focus on multi-p layer games with continuous action spaces, and we examine the long-run behavior of strategic agents that follow a no-regret learning policy (but are otherwise oblivious to the game being played, the objectives of their opponents, etc.). To account for the lack of a consistent stream of information (for instance, rewards can arrive out of order, with an a priori unbounded delay, etc.), we introduce a gradient-free learning policy where payoff information is placed in a priority queue as it arrives. In this general context, we derive new bounds for the agents regret; furthermore, under a standard diagonal concavity assumption, we show that the induced sequence of play converges to Nash equilibrium with probability $1$, even if the delay between choosing an action and receiving the corresponding reward is unbounded.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا