ترغب بنشر مسار تعليمي؟ اضغط هنا

The Schulze Method of Voting

71   0   0.0 ( 0 )
 نشر من قبل Markus Schulze
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Markus Schulze




اسأل ChatGPT حول البحث

We propose a new single-winner election method (Schulze method) and prove that it satisfies many academic criteria (e.g. monotonicity, reversal symmetry, resolvability, independence of clones, Condorcet criterion, k-consistency, polynomial runtime). We then generalize this method to proportional representation by the single transferable vote (Schulze STV) and to methods to calculate a proportional ranking (Schulze proportional ranking). Furthermore, we propose a generalization of the Condorcet criterion to multi-winner elections. This paper contains a large number of examples to illustrate the proposed methods.



قيم البحث

اقرأ أيضاً

105 - Martin Lackner , Jan Maly 2021
Perpetual voting was recently introduced as a framework for long-term collective decision making. In this framework, we consider a sequence of subsequent approval-based elections and try to achieve a fair overall outcome. To achieve fairness over tim e, perpetual voting rules take the history of previous decisions into account and identify voters that were dissatisfied with previous decisions. In this paper, we look at perpetual voting rules from an axiomatic perspective and study two main questions. First, we ask how simple such rules can be while still meeting basic desiderata. For two simple but natural classes, we fully characterize the axiomatic possibilities. Second, we ask how proportionality can be formalized in perpetual voting. We study proportionality on simple profiles that are equivalent to the apportionment setting and show that lower and upper quota axioms can be used to distinguish (and sometimes characterize) perpetual voting rules. Furthermore, we show a surprising connection between a perpetual rule called Perpetual Consensus and Freges apportionment method.
Weighted voting games (WVG) are coalitional games in which an agents contribution to a coalition is given by his it weight, and a coalition wins if its total weight meets or exceeds a given quota. These games model decision-making in political bodies as well as collaboration and surplus division in multiagent domains. The computational complexity of various solution concepts for weighted voting games received a lot of attention in recent years. In particular, Elkind et al.(2007) studied the complexity of stability-related solution concepts in WVGs, namely, of the core, the least core, and the nucleolus. While they have completely characterized the algorithmic complexity of the core and the least core, for the nucleolus they have only provided an NP-hardness result. In this paper, we solve an open problem posed by Elkind et al. by showing that the nucleolus of WVGs, and, more generally, k-vector weighted voting games with fixed k, can be computed in pseudopolynomial time, i.e., there exists an algorithm that correctly computes the nucleolus and runs in time polynomial in the number of players and the maximum weight. In doing so, we propose a general framework for computing the nucleolus, which may be applicable to a wider of class of games.
We analyse strategic, complete information, sequential voting with ordinal preferences over the alternatives. We consider several voting mechanisms: plurality voting and approval voting with deterministic or uniform tie-breaking rules. We show that s trategic voting in these voting procedures may lead to a very undesirable outcome: Condorcet winning alternative might be rejected, Condorcet losing alternative might be elected, and Pareto dominated alternative might be elected. These undesirable phenomena occur already with four alternatives and a small number of voters. For the case of three alternatives we present positive and negative results.
We discuss voting scenarios in which the set of voters (agents) and the set of alternatives are the same; that is, voters select a single representative from among themselves. Such a scenario happens, for instance, when a committee selects a chairper son, or when peer researchers select a prize winner. Our model assumes that each voter either renders worthy (confirms) or unworthy any other agent. We further assume that the prime goal of each agent is to be selected himself. Only if that is not feasible, will he try to get one of those that he confirms selected. In this paper, we investigate the open-sequential voting system in the above model. We consider both plurality (where each voter has one vote) and approval (where a voter may vote for any subset). Our results show that it is possible to find scenarios in which the selected agent is much less popular than the optimal (most popular) agent. We prove, however, that in the case of approval voting, the ratio between their popularity is always bounded from above by 2. In the case of plurality voting, we show that there are cases in which some of the equilibria give an unbounded ratio, but there always exists at least one equilibrium with ratio 2 at most.
We address the question of aggregating the preferences of voters in the context of participatory budgeting. We scrutinize the voting method currently used in practice, underline its drawbacks, and introduce a novel scheme tailored to this setting, wh ich we call Knapsack Voting. We study its strategic properties - we show that it is strategy-proof under a natural model of utility (a dis-utility given by the $ell_1$ distance between the outcome and the true preference of the voter), and partially strategy-proof under general additive utilities. We extend Knapsack Voting to more general settings with revenues, deficits or surpluses, and prove a similar strategy-proofness result. To further demonstrate the applicability of our scheme, we discuss its implementation on the digital voting platform that we have deployed in partnership with the local government bodies in many cities across the nation. From voting data thus collected, we present empirical evidence that Knapsack Voting works well in practice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا