ﻻ يوجد ملخص باللغة العربية
The classical problem of the brachistochrone asks for the curve down which a body sliding from rest and accelerated by gravity will slip (without friction) from one point to another in least time. In undergraduate courses on classical mechanics, the solution of this problem is the primary example of the power of the variational calculus. Here we address the generalized brachistochrone problem that asks for the fastest sliding curve between a point and a given curve or between two given curves. The generalized problem can be solved by considering variations with varying endpoints. We will contrast the formal solution with a much simpler solution based on symmetry and kinematic reasoning. Our exposition should encourage teachers to include variational problems with free boundary conditions in their courses and students to try simple, intuitive solutions first.
The winds of cool luminous AGB stars are commonly assumed to be driven by radiative acceleration of dust grains which form in the extended atmospheres produced by pulsation-induced shock waves. The dust particles gain momentum by absorption or scatte
To evaluate the performance of prediction of missing links, the known data are randomly divided into two parts, the training set and the probe set. We argue that this straightforward and standard method may lead to terrible bias, since in real biolog
Transforming an initial quantum state into a target state through the fastest possible route---a quantum brachistochrone---is a fundamental challenge for many technologies based on quantum mechanics. Here, we demonstrate fast coherent transport of an
This article introduces the notion of a loose family of Engel structures and shows that two such families are Engel homotopic if and only if they are formally homotopic. This implies a complete h-principle when some auxiliary data is fixed. As a coro
Let G and F be finitely generated groups with infinitely many ends and let A and B be graph of groups decompositions of F and G such that all edge groups are finite and all vertex groups have at most one end. We show that G and F are quasi-isometric