ﻻ يوجد ملخص باللغة العربية
To evaluate the performance of prediction of missing links, the known data are randomly divided into two parts, the training set and the probe set. We argue that this straightforward and standard method may lead to terrible bias, since in real biological and information networks, missing links are more likely to be links connecting low-degree nodes. We therefore study how to uncover missing links with low-degree nodes, namely links in the probe set are of lower degree products than a random sampling. Experimental analysis on ten local similarity indices and four disparate real networks reveals a surprising result that the Leicht-Holme-Newman index [E. A. Leicht, P. Holme, and M. E. J. Newman, Phys. Rev. E 73, 026120 (2006)] performs the best, although it was known to be one of the worst indices if the probe set is a random sampling of all links. We further propose an parameter-dependent index, which considerably improves the prediction accuracy. Finally, we show the relevance of the proposed index on three real sampling methods.
Uncovering factors underlying the network formation is a long-standing challenge for data mining and network analysis. In particular, the microscopic organizing principles of directed networks are less understood than those of undirected networks. Th
Outliers arise in networks due to different reasons such as fraudulent behavior of malicious users or default in measurement instruments and can significantly impair network analyses. In addition, real-life networks are likely to be incompletely obse
The structure of the turbulence-driven power fluctuations in a wind farm is fundamentally described from basic concepts. A derived tuning-free model, supported with experiments, reveals the underlying spectral content of the power fluctuations of a w
In this paper, by introducing a new user similarity index base on the diffusion process, we propose a modified collaborative filtering (MCF) algorithm, which has remarkably higher accuracy than the standard collaborative filtering. In the proposed al
In this Letter, we introduce a modified collaborative filtering (MCF) algorithm, which has remarkably higher accuracy than the standard collaborative filtering. In the MCF, instead of the standard Pearson coefficient, the user-user similarities are o