ﻻ يوجد ملخص باللغة العربية
Let G and F be finitely generated groups with infinitely many ends and let A and B be graph of groups decompositions of F and G such that all edge groups are finite and all vertex groups have at most one end. We show that G and F are quasi-isometric if and only if every one-ended vertex group of A is quasi-isometric to some one-ended vertex group of B and every one-ended vertex group of B is quasi-isometric to some one-ended vertex group of A. From our proof it also follows that if G is any finitely generated group, of order at least three, the groups: G*G, G*Z,G*G*G and G* Z/2Z are all quasi-isometric.
We prove that the Teichmuller space of surfaces with given boundary lengths equipped with the arc metric (resp. the Teichmuller metric) is almost isometric to the Teichmuller space of punctured surfaces equipped with the Thurston metric (resp. the Teichmuller metric).
In this note, we announce the first results on quasi-isometric rigidity of non-nilpotent polycyclic groups. In particular, we prove that any group quasi-isometric to the three dimenionsional solvable Lie group Sol is virtually a lattice in Sol. We pr
We construct a finitely presented group with infinitely many non-homeomorphic asymptotic cones. We also show that the existence of cut points in asymptotic cones of finitely presented groups does, in general, depend on the choice of scaling constants and ultrafilters.
We prove the existence of Veech groups having a critical exponent strictly greater than any elementary Fuchsian group (i.e. $>frac{1}{2}$) but strictly smaller than any lattice (i.e. $<1$). More precisely, every affine covering of a primitive L-shape
This paper overviews recent developments in the classification up to quasi-isometry of finitely generated groups, and more specifically of relatively hyperbolic groups.