ﻻ يوجد ملخص باللغة العربية
The winds of cool luminous AGB stars are commonly assumed to be driven by radiative acceleration of dust grains which form in the extended atmospheres produced by pulsation-induced shock waves. The dust particles gain momentum by absorption or scattering of stellar photons, and they drag along the surrounding gas particles through collisions, triggering an outflow. This scenario, here referred to as Pulsation-Enhanced Dust-DRiven Outflow (PEDDRO), has passed a range of critical observational tests as models have developed from empirical and qualitative to increasingly self-consistent and quantitative. A reliable theory of mass loss is an essential piece in the bigger picture of stellar and galactic chemical evolution, and central for determining the contribution of AGB stars to the dust budget of galaxies. In this review, I discuss the current understanding of wind acceleration and indicate areas where further efforts by theorists and observers are needed.
The classical problem of the brachistochrone asks for the curve down which a body sliding from rest and accelerated by gravity will slip (without friction) from one point to another in least time. In undergraduate courses on classical mechanics, the
We develop a magnetohydrodynamical model of Alfven wave-driven wind in open magnetic flux tubes piercing the stellar surface of Red Giant Branch (RGB) and Asymptotic Giant Branch (AGB) stars, and investigate the physical properties of the winds. The
We review the observational evidence for dust formation in Wolf-Rayet binary systems and in Type II Supernova ejecta. Existing theoretical models describing the condensation of solids in carbon-rich Wolf-Rayet stars and in Supernovae close by and at
We investigate the star formation history and metallicity of the Local Group irregular dwarf galaxy WLM using wide-field JHK near-infrared imaging, spanning a region of approximately 1 sq. degree, obtained with WFCAM on UKIRT. JHK photometry clearly
There is ample evidence for strong magnetic fields in the envelopes of (Post-)Asymptotic Giant Branch (AGB) stars as well as supergiant stars. The origin and role of these fields are still unclear. This paper updates the current status of magnetic fi