ترغب بنشر مسار تعليمي؟ اضغط هنا

كورالي: جمع ملصقات رد الفعل الفكاهة من ملايين مستخدمي وسائل التواصل الاجتماعي

CHoRaL: Collecting Humor Reaction Labels from Millions of Social Media Users

377   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

اكتسب الكشف عن فكاهة الاهتمام في السنوات الأخيرة بسبب الرغبة في فهم المحتوى الذي تم إنشاؤه من قبل المستخدم بلغة مجازية. ومع ذلك، فإن الخلافات الفردية والثقافية الكبيرة في التصور الفكاهي تجعل من الصعب للغاية جمع مجموعة بيانات الفكاهة على نطاق واسع مع علامات فكاهة موثوقة. نقترح كورالي، وهو إطار لتوليد ملصقات الفكاهة المتصورة على Facebook Works، باستخدام ردود الفعل المستخدم المتاحة بشكل طبيعي على هذه الوظائف مع عدم وجود شرح يدوي مطلوبا. يوفر Choral كل من الملصقات الثنائية والعشرات المستمرة من الفكاهة وغير الفكاهة. نقدم أكبر مجموعة بيانات حتى الآن مع الفكاهة المسمى على المشاركات 785K ذات الصلة إلى Covid-19. بالإضافة إلى ذلك، نقوم بتحليل التعبير عن الفكاهة المرتبطة بالسيارة في وسائل التواصل الاجتماعي عن طريق استخراج ميزات المعمير الدلالية والعاطفية من المشاركات، وبناء نماذج الكشف عن الفكاهة مع أداء مشابه للبشر. يتيح كورالي تطوير نماذج الكشف عن فكاهة واسعة النطاق على أي موضوع ويفتح طريقا جديدا لدراسة الفكاهة على وسائل التواصل الاجتماعي.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تصف هذه الورقة مساهمة Helsinki - Ljubljana المهمة المشتركة في عام 2021 في مجال تحديد الموقع الجغرافي للوسائط الجغرافية الاجتماعية.بعد مشاركتنا الناجحة في 32020، اقترحنا مرة أخرى أنظمة مقيدة وغير مقيدة بناء على بنية بيرت.في هذه الورقة، نقوم بالإبلاغ ع ن تجارب مع إعدادات التكوين المختلفة ونماذج مختلفة تم تدريبها مسبقا، وننظر إلى نهج الانحدار الخالي من المعلمة مع مخططات التصنيف المختلفة التي اقترحها المشاركين الآخرون في كل من التعليمات الفاردة 2020. كل من التعليمات البرمجية وأفضل أداء مسبقا مسبقايتم تقديم النماذج بحرية المتاحة.
تصبح الصحة العقلية أكثر اهتماما مؤخرا مؤخرا، والاكتئاب كونه مرض شائع جدا في الوقت الحاضر، ولكن أيضا اضطرابات أخرى مثل القلق أو الاضطرابات القهرية الهوس أو اضطرابات التغذية أو اضطرابات نقص الانتباه / اضطرابات نقص الانتباه / فرط النشاط. توفر كمية كبيرة من البيانات من وسائل التواصل الاجتماعي والسلف الحديث لنماذج التعلم العميق وسيلة قيمة للكشف عن الاضطرابات النفسية تلقائيا من نص عادي. في هذه المقالة، نقوم بتجربة أساليب حديثة في مجموعة بيانات الصحة العقلية SMHD من Reddit (كوهان وآخرون، 2018). مساهمتنا ثلاثة أضعاف: استخدام مجموعة بيانات تتكون من المزيد من الأمراض أكثر من معظم الدراسات، مع التركيز على النص العام بدلا من مجموعات دعم الصحة العقلية والتصنيف من قبل الوظائف بدلا من الأفراد أو المجموعات. بالنسبة للتصنيف التلقائي للأمراض، فإننا نوظف ثلاث نماذج تعليمية عميقة: بيرت روبرتا و XLNet. نحن مضاعفة خط الأساس الذي أنشأه كوهان وآخرون. (2018)، على عينة فقط من مجموعة البيانات الخاصة بهم. نحن نحسن النتائج التي حصلت عليها جيانغ وآخرون. (2020) على تصنيف ما بعد المستوى. إن الدقة التي حصلت عليها مصنف اضطراب الأكل هو أعلى نظرا للوجود الحامل للمناقشات المتعلقة بالسعرات الحرارية والوجبات الغذائية والوصفات وما إلى ذلك، في حين أن الاكتئاب كان لديه أدنى درجة F1، ربما لأن الاكتئاب أكثر صعوبة في تحديد الأفعال اللغوية.
يستخدم عمل خطاب الشكوى من قبل البشر للتواصل مع عدم وجود عدم تطابق سلبي بين الواقع والتوقعات كرد فعل على وضع غير موات. تصنف النظرية اللغوية للبراغماتية شكاوى إلى مستويات شدة مختلفة تعتمد على تهديد الوجه الذي يرغب فيه الشكوى في القيام به. هذا مفيد بشكل خاص لفهم نية الشكوكيين وكيف يطور البشر استراتيجيات اعتذار مناسبة. في هذه الورقة، ندرس مستوى شدة الشكاوى لأول مرة في اللغويات الحاسوبية. لتسهيل ذلك، فإننا نشعر بإثراء مجموعة بيانات متاحة للجمهور من الشكاوى مع أربع فئات شدة وتدريب شبكات مختلفة قائمة على المحولات جنبا إلى جنب مع المعلومات اللغوية التي تحقق 55.7 ماكرو F1. كما نقوم بالاشتراك في تصنيف تصنيف الشكاوى الثنائية وشدة الشكاوى في إعدادات متعددة المهام التي تحقق نتائج جديدة لتحقيق نتائج جديدة على اكتشاف الشكاوى الثنائية تصل إلى 88.2 ماكرو F1. أخيرا، نقدم تحليلا نوعيا لسلوك نماذجنا في التنبؤ بمستويات شدة الشكوى.
السخرية عبارة عن تعبير لغوي يستخدم في كثير من الأحيان للتواصل مع عكس ما يقال، وعادة ما يكون شيئا غير سار للغاية بقصد الإهانة أو السخرية.الغموض الكامنة في التعبيرات الساخرة يجعل اكتشاف السخرية صعبة للغاية.في هذا العمل، نركز على الكشف عن السخرية في محا دثات نصية، مكتوبة باللغة الإنجليزية، من منصات الشبكات الاجتماعية المختلفة وسائط الإعلام عبر الإنترنت.تحقيقا لهذه الغاية، نقوم بتطوير نموذج لتعلم عميق قابل للتفسير باستخدام وحدات انتباه ذاتيا متعددة الرأس والوحدات المتكررة.نظهر فعالية وتفسير نهجنا من خلال تحقيق نتائج أحدث النتائج في مجموعات البيانات من منصات الشبكات الاجتماعية ومنتديات المناقشة عبر الإنترنت والحوارات السياسية.
غالبا ما تحتوي نصوص وسائل التواصل الاجتماعي مثل منشورات المدونة والتعليقات والتغريدات بلغات هجومية بما في ذلك تعليقات خطاب الكراهية العنصرية والهجمات الشخصية والتحرش الجنسي.لذلك اكتشاف الاستخدام غير المناسب للغة هو أهمية قصوى لسلامة المستخدمين وكذلك لقمع السلوك البغيض والعدوان.الأساليب الحالية لهذه المشكلة متاحة في الغالب لغات غنية بالموارد مثل الإنجليزية والألمانية.في هذه الورقة، نميز اللغة المسيئة في النيبالية، وهي لغة موارد منخفضة، تسليط الضوء على التحديات التي يجب معالجتها لمعالجة نص وسائل الإعلام الاجتماعية النيبالية.نقدم أيضا تجارب للكشف عن اللغة المسيئة باستخدام تعلم الآلات الخاضعة للإشراف.إلى جانب المساهمة في أول مناهج خط الأساس في الكشف عن اللغة الهجومية في النيبالية، نطلق أيضا على مجموعات البيانات المشروح البشرية لتشجيع البحث في المستقبل على هذا الموضوع الحاسم.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا