ترغب بنشر مسار تعليمي؟ اضغط هنا

الكشف التلقائي وتصنيف الأمراض العقلية من نصوص وسائل التواصل الاجتماعي العام

Automatic Detection and Classification of Mental Illnesses from General Social Media Texts

349   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تصبح الصحة العقلية أكثر اهتماما مؤخرا مؤخرا، والاكتئاب كونه مرض شائع جدا في الوقت الحاضر، ولكن أيضا اضطرابات أخرى مثل القلق أو الاضطرابات القهرية الهوس أو اضطرابات التغذية أو اضطرابات نقص الانتباه / اضطرابات نقص الانتباه / فرط النشاط. توفر كمية كبيرة من البيانات من وسائل التواصل الاجتماعي والسلف الحديث لنماذج التعلم العميق وسيلة قيمة للكشف عن الاضطرابات النفسية تلقائيا من نص عادي. في هذه المقالة، نقوم بتجربة أساليب حديثة في مجموعة بيانات الصحة العقلية SMHD من Reddit (كوهان وآخرون، 2018). مساهمتنا ثلاثة أضعاف: استخدام مجموعة بيانات تتكون من المزيد من الأمراض أكثر من معظم الدراسات، مع التركيز على النص العام بدلا من مجموعات دعم الصحة العقلية والتصنيف من قبل الوظائف بدلا من الأفراد أو المجموعات. بالنسبة للتصنيف التلقائي للأمراض، فإننا نوظف ثلاث نماذج تعليمية عميقة: بيرت روبرتا و XLNet. نحن مضاعفة خط الأساس الذي أنشأه كوهان وآخرون. (2018)، على عينة فقط من مجموعة البيانات الخاصة بهم. نحن نحسن النتائج التي حصلت عليها جيانغ وآخرون. (2020) على تصنيف ما بعد المستوى. إن الدقة التي حصلت عليها مصنف اضطراب الأكل هو أعلى نظرا للوجود الحامل للمناقشات المتعلقة بالسعرات الحرارية والوجبات الغذائية والوصفات وما إلى ذلك، في حين أن الاكتئاب كان لديه أدنى درجة F1، ربما لأن الاكتئاب أكثر صعوبة في تحديد الأفعال اللغوية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

بالنظر إلى لوائح التناقض الاجتماعي الحالية في جميع أنحاء العالم، أصبحت وسائل التواصل الاجتماعي الوضع الأساسي للتواصل لمعظم الناس. وقد عزل هذا الملايين الذين يعانون من الأمراض العقلية الذين لا يستطيعون الحصول على المساعدة شخصيا. لقد تحولوا بشكل متزايد إلى المنصات عبر الإنترنت للتعبير عن أنفسهم والبحث عن إرشادات في التعامل مع أمراضهم. مع مراعاة ذلك، نقترح حلا لتصنيف وظائف المرض العقلي على وسائل التواصل الاجتماعي مما يتيح للمستخدمين طلب المساعدة المناسبة. في هذا العمل، صنف خمسة أنواع بارزة من الأمراض العقلية - الاكتئاب والقلق والاضطراب الثنائي القطبية و ADHD و PTSD عن طريق تحليل بيانات المستخدم غير منظم على Reddit. بالإضافة إلى ذلك، نشارك بيانات DataSet1 جديدة عالية الجودة لدفع البحث في هذا الموضوع. تتكون DataSet من عنوان ونصوص نشرها من 17159 وظيفة و 13 Subreddits كل واحد مرتبط بأحد الأمراض العقلية الخمس المذكورة أعلاه أو بدون فئة تشير إلى عدم وجود أي مرض عقلي. يتم تدريب النموذج الخاص بنا على بيانات Reddit ولكنه قابل للتوسيع بسهولة لمنصات وسائل التواصل الاجتماعي الأخرى وكذلك أظهرت في نتائجنا. نعتقد أن عملنا هو أول نموذج متعدد الطبقات يستخدم بنية تحويل محولات مثل روبرتا لتحليل عواطف الناس و علم النفس. نحن نوضح أيضا كيف نشدد اختبار نموذجنا باستخدام الاختبار السلوكي. تتوفر DataSet علنا ​​علنا ​​ونشجع الباحثين على الاستفادة من ذلك لتحقيق البحث في هذه الساحة. نأمل أن يساهم هذا العمل في نظام الصحة العامة بأتمتة بعض عمليات الكشف وتنبيه السلطات المختصة عن المستخدمين الذين يحتاجون إلى مساعدة فورية.
في الوقت الحاضر، هناك الكثير من الإعلانات التي تختبئ كوظائف طبيعية أو مشاريع خبرة في وسائل التواصل الاجتماعي.هناك القليل من البحوث في الكشف عن الإعلانات على النصوص الصينية الماندرين.وهكذا تهدف هذه الورقة إلى التركيز على الكشف الإعلامي المخفي عن المشا ركات عبر الإنترنت في تايوان ماندرين الصينية.لقد فحصنا سبعة ميزات سياقية بناء على نظريات لغوية في مستوى الخطاب.يمكن تجميع هذه الميزات إلى ثلاثة مخططات تحت بنية الكتابة العامة العامة.نفذت هذه الميزات هذه لتدريب نموذج برت متعدد المهام للكشف عن إعلانات.اقترحت النتائج أن ميزات لغوية محددة سيساعد في استخراج إعلانات.
مكنت الوصول الواسع من منصات وسائل التواصل الاجتماعي، مثل Twitter، العديد من المستخدمين من مشاركة أفكارهم وآرائهم وعواطفهم على مواضيع مختلفة عبر الإنترنت. سيسمح القدرة على الكشف عن هذه المشاعر تلقائيا العلماء الاجتماعيين، وكذلك الشركات التي يجب فهم ال ردود بشكل أفضل من الأمم والأزياء. في هذه الدراسة، نقدم مجموعة بيانات تتراوح بين 30،000 تغريدات فارسي تحمل مشاعر EKMAN الأساسية الستة (الغضب والخوف والسعادة والحزن والحزن والكراهية والعجب). هذه هي أول مجموعة بيانات العاطفة المتاحة للجمهور في اللغة الفارسية. في هذه الورقة، نوضح نظام جمع البيانات ووضع العلامات المستخدمة لإنشاء هذه البيانات. نقوم أيضا بتحليل مجموعة البيانات التي تم إنشاؤها، والتي تظهر ميزات وخصائص البيانات المختلفة. من بين أشياء أخرى، نحقق في حدوث مشاعر مختلفة في مجموعة البيانات، والعلاقة بين المعنويات والعاطفة الحالات النصية. تتوفر DataSet علنا ​​في https://github.com/nazaninsbr/persian-emotion-detection.
السخرية عبارة عن تعبير لغوي يستخدم في كثير من الأحيان للتواصل مع عكس ما يقال، وعادة ما يكون شيئا غير سار للغاية بقصد الإهانة أو السخرية.الغموض الكامنة في التعبيرات الساخرة يجعل اكتشاف السخرية صعبة للغاية.في هذا العمل، نركز على الكشف عن السخرية في محا دثات نصية، مكتوبة باللغة الإنجليزية، من منصات الشبكات الاجتماعية المختلفة وسائط الإعلام عبر الإنترنت.تحقيقا لهذه الغاية، نقوم بتطوير نموذج لتعلم عميق قابل للتفسير باستخدام وحدات انتباه ذاتيا متعددة الرأس والوحدات المتكررة.نظهر فعالية وتفسير نهجنا من خلال تحقيق نتائج أحدث النتائج في مجموعات البيانات من منصات الشبكات الاجتماعية ومنتديات المناقشة عبر الإنترنت والحوارات السياسية.
يستخدم استخدام اللغة بين المجالات وحتى داخل المجال، يتغير استخدام اللغة بمرور الوقت. بالنسبة لنماذج اللغة المدربة مسبقا مثل Bert، فقد ثبت أن تكييف المجال من خلال استمرار التدريب المستمر لتحسين الأداء في مهام Towstream داخل المجال. في هذه المقالة، يمك ننا التحقيق فيما إذا كان التكيف الزمني يمكن أن يجلب فوائد إضافية. لهذا الغرض، نقدم كذبة من وسائل التواصل الاجتماعي تعليقات عينات أكثر من ثلاث سنوات. أنه يحتوي على بيانات غير مسؤولة عن التكيف والتقييم على مهمة نمذجة لغة ملثم في المنبع بالإضافة إلى البيانات المسمى للضبط الدقيق والتقييم في مهمة تصنيف المستندات المصب. نجد أن هذه المهام في كل من المهام: التكيف الزمني يحسن أداء مهام المهام المصب والصقل الزمني الصخري. تؤدي النماذج الزمنية الخاصة عموما بشكل عام في الماضي عن مجموعات الاختبار المستقبلية، مما يطابق الأدلة على الاستخدام الدائر للكلمات الموضعية. ومع ذلك، لا يحسن تكييف Bert to Time & Domain الأداء على المهمة المصب على التكيف فقط إلى المجال. يوضح تحليل المستوى الرمز المميز أن التكيف الزمني يلتقط التغييرات التي يحركها الأحداث في استخدام اللغة في مهمة المصب، ولكن ليس هذه التغييرات ذات الصلة بالفعل بأداء المهام. بناء على النتائج التي توصلنا إليها، نناقش متى قد يكون التكيف الزمني أكثر فعالية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا