ترغب بنشر مسار تعليمي؟ اضغط هنا

عززت تكبير البيانات المضادة لتصنيف المعنويات المزدوجة

Reinforced Counterfactual Data Augmentation for Dual Sentiment Classification

610   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

حقق نهج تكبير البيانات والضيقات الخصم مؤخرا نتائج واعدة في حل المشكلة المفرطة في العديد من مهام معالجة اللغة الطبيعية (NLP) بما في ذلك تصنيف المعنويات. ومع ذلك، فإن الدراسات الحالية التي تهدف إلى تحسين قدرة التعميم من خلال زيادة البيانات التدريبية مع أمثلة مرادفة أو إضافة ضوضاء عشوائية إلى Adgeddings Word، والتي لا يمكنها معالجة مشكلة الرابطة الزائفة. في هذا العمل، نقترح إطارا لتعزيز التعزيز نهاية إلى نهاية، والذي ينفذ بشكل مشترك توليد بيانات مضادة وتصنيف المعنويات المزدوجة. نهجنا لديه ثلاث خصائص: 1) يولد المولد تلقائيا جمل هائلة ومتنوعة؛ 2) يحتوي التمييز على مؤشر للمشاعر الجانبية الأصلية ومؤشر المعنويات الجانبية الناضجة، والذي يقوم بتقييم جودة العينة الناتجة بشكل مشترك ومساعدة المولد على توليد عينات مجفوف عالية الجودة أعلى جودة؛ 3) يتم استخدام التمييز مباشرة كقسم المعنويات النهائية دون الحاجة إلى بناء واحد إضافي. تظهر تجارب واسعة أن نهجنا يتفوق على خطوط خطوط خطوط تكبير البيانات قوية على العديد من مجموعات بيانات تصنيف المعفاة القياسية. يؤكد إجراء مزيد من التحليل بمزايا نهجنا في توليد عينات تدريب أكثر تنوعا وحل مشكلة الرابطة الزائفة في تصنيف المعنويات.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

نقترح طريقة تكبير البيانات للترجمة الآلية العصبية.إنه يعمل عن طريق تفسير نماذج اللغة ومحاذاة الجمل الفعلية سببا.على وجه التحديد، فإنه يخلق كورس ترجمة موازية مزعجة عن طريق توليد عبارات محاذاة مضادة للمحاطة (المسار).نحن نولد هذه من خلال أخذ عينات من عب ارات مصدر جديدة من نموذج لغة ملثم، ثم أخذ عينات من عبارة مستهدفة محاذاة محاذاة من خلال الإشارة إلى أن نموذج لغة الترجمة يمكن تفسيره على أنه نموذج سببي هيكلي Gumbel-Max (Oberst و Sontag، 2019).مقارنة بالعمل السابق، تأخذ طريقتنا السياق ومحاذاة في الاعتبار للحفاظ على التماثل بين المصدر والتسلسلات المستهدفة.تجارب على iwslt'15 الإنجليزية → الفيتنامية، WMT'17 الإنجليزية → الألمانية، WMT'18 English → التركية، و WMT'19 قوية الإنجليزية → معرض الفرنسية أن الطريقة يمكن أن تحسن أداء الترجمة والخلفية والترجمة قوية.
تقترح هذه الورقة AEDA (أداة تكبير البيانات أسهل) للمساعدة في تحسين الأداء في مهام تصنيف النص.يتضمن AEDA إدراج عشوائي فقط من علامات الترقيم في النص الأصلي.هذه تقنية أسهل لتنفيذ تكبير البيانات من طريقة EDA (Wei و Zou، 2019) مقارنة نتائجنا.بالإضافة إلى ذلك، فإنه يحتفظ بترتيب الكلمات أثناء تغيير مواقعهم في الجملة المؤدية إلى أداء أفضل معمم.علاوة على ذلك، فإن عملية الحذف في إيدا يمكن أن تسبب فقدان المعلومات التي، بدورها تضلل الشبكة، في حين أن Aeda يحافظ على جميع معلومات الإدخال.بعد خط الأساس، نقوم بإجراء تجارب على خمسة مجموعات بيانات مختلفة لتصنيف النص.نظهر باستخدام البيانات المعززة AEDA للتدريب، تظهر النماذج أداء فائقا مقارنة باستخدام البيانات المعززة إيدا في جميع مجموعات البيانات الخمسة.سيتم توفير شفرة المصدر لمزيد من الدراسة واستنساخ النتائج.
كل من قضايا أوجه القصور في البيانات والاتساق الدلالي مهم لتعزيز البيانات.معظم الطرق السابقة تعالج القضية الأولى، ولكن تجاهل المرحلة الثانية.في حالات تحليل المعنويات المستندة إلى جانب الجسيم، قد يغير انتهاك القضايا المذكورة أعلاه قطبية الجانب والمشاعر .في هذه الورقة، نقترح نهج تكبير بيانات الحفاظ على دلالات - من خلال النظر في أهمية كل كلمة في تسلسل نصي وفقا للجوانب والمشاعر ذات الصلة.ثم نحل محل الرموز غير المهتمات مع استراتيجيتين استبدال دون تغيير قطبية مستوى الجانب.يتم تقييم نهجنا على العديد من مجموعات بيانات تحليل المعنويات المتاحة للجمهور وسيناريوهات التنبؤ في مجال الأسهم / المخاطر في العالم الحقيقي.تظهر النتائج التجريبية أن منهجيةنا تحقق أداء أفضل في جميع مجموعات البيانات.
أظهرت التقدم المحدد في استخدام مكونات الاسترجاع على مصادر المعرفة الخارجية نتائج رائعة لمجموعة متنوعة من المهام المصب في معالجة اللغة الطبيعية.هنا، نستكشف استخدام مصادر المعرفة الخارجية غير منتهية للصور وتستياؤها المقابلة لتحسين الإجابة على السؤال ال مرئي (VQA).أولا، نحن ندرب نموذج محاذاة جديدة لتضمين الصور والتعليقات التوضيحية في نفس الفضاء، والذي يحقق تحسنا كبيرا في الأداء على استرجاع التعليق على الصورة W.r.T.طرق مماثلة.ثانيا، نظهر أن المحولات متعددة الوسائط متعددة الاسترجاع باستخدام نموذج المحاذاة المدربين يحسن النتائج على VQA عبر خطوط خطوط خطوط خطوط خطوط خطوط خطوط خطوط خطوط طويلة.كلنا إجراء تجارب مكثفة لإثبات وعد هذا النهج، وفحص طلبات جديدة لوقت الاستدلال مثل مؤشرات التبديلات الساخنة.
تصف هذه الورقة مشاركة فريق UOB-NLP في SubTask SubTask المشترك 7A.كانت المهمة تهدف إلى اكتشاف ذكر المهن في نص وسائل التواصل الاجتماعي.جرب فريقنا بطريقتين لتحسين أداء النماذج المدربة مسبقا: على وجه التحديد، جربنا مع زيادة البيانات من خلال الترجمة ودمج المدخلات اللغوية المتعددة لتلبية هدف المهمة.في حين أن أفضل نموذج أداء في بيانات الاختبار تتألف من Mbert Tuned على البيانات المعززة باستخدام الترجمة الخلفية، فإن التحسن بسيطا ربما لأن النماذج المدربة مسبقا متعددة اللغات مثل Mbert لديها بالفعل الوصول إلى نوع المعلومات المقدمة من خلال الخلف- البيانات والبيانات ثنائية اللغة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا