ترغب بنشر مسار تعليمي؟ اضغط هنا

تكبير استرجاع مشروط لتصنيف متعدد الوسائط

Cross-Modal Retrieval Augmentation for Multi-Modal Classification

312   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

أظهرت التقدم المحدد في استخدام مكونات الاسترجاع على مصادر المعرفة الخارجية نتائج رائعة لمجموعة متنوعة من المهام المصب في معالجة اللغة الطبيعية.هنا، نستكشف استخدام مصادر المعرفة الخارجية غير منتهية للصور وتستياؤها المقابلة لتحسين الإجابة على السؤال المرئي (VQA).أولا، نحن ندرب نموذج محاذاة جديدة لتضمين الصور والتعليقات التوضيحية في نفس الفضاء، والذي يحقق تحسنا كبيرا في الأداء على استرجاع التعليق على الصورة W.r.T.طرق مماثلة.ثانيا، نظهر أن المحولات متعددة الوسائط متعددة الاسترجاع باستخدام نموذج المحاذاة المدربين يحسن النتائج على VQA عبر خطوط خطوط خطوط خطوط خطوط خطوط خطوط خطوط خطوط طويلة.كلنا إجراء تجارب مكثفة لإثبات وعد هذا النهج، وفحص طلبات جديدة لوقت الاستدلال مثل مؤشرات التبديلات الساخنة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

حققت نماذج لغة الرؤية المحددة الأخيرة أداء مثير للإعجاب على مهام الاسترجاع عبر مشروط باللغة الإنجليزية. ومع ذلك، تعتمد نجاحهم بشكل كبير على توافر العديد من مجموعات بيانات التعليق المشروح على الصورة لإحاطاء، حيث لا تكون النصوص بالضرورة باللغة الإنجليز ية. على الرغم من أنه يمكننا استخدام أدوات الترجمة الآلية (MT) لترجمة النص غير الإنجليزي إلى اللغة الإنجليزية، فإن الأداء لا يزال يعتمد إلى حد كبير على جودة MT وقد يعاني من مشاكل عالية من الكمون في تطبيقات العالم الحقيقي. تقترح هذه الورقة نهجا جديدا لتعلم تمثيلات متعددة الوسائط عبر اللغات لمطابقة الصور وإياراتها ذات الصلة بلغات متعددة. نجمع بسلاسة بسلاسة أهداف محالمانية عبر اللغات وأهداف محالم الاحتجاج بالعدوان في إطار موحد لتعلم الصور والنص في مساحة تضمين مشتركة من بيانات التسمية التوضيحية باللغة الإنجليزية المتاحة، مونولينغيا ومتوازي Corpus. نظظ أن نهجنا يحقق أداء SOTA في مهام استرجاع على معايير التسمية التوضيحية متعددة اللغات متعددة اللغات متعددة اللغات: multi30k مع التسميات التوضيحية الألمانية و mscoco مع التسميات التوضيحية اليابانية.
نقترح مهمة جديدة، Text2Mol، لاسترداد الجزيئات باستخدام أوصاف اللغة الطبيعية كاستعلامات. تشفر اللغة الطبيعية والجزيئات المعلومات بطرق مختلفة جدا، مما يؤدي إلى مشكلة مثيرة ولكن صعبة للغاية لإدماج هاتين الطرائق المختلفة للغاية. على الرغم من أن بعض الأعم ال قد تم في استرجاع الاسترجاع والبنية القائمة على النصوص، إلا أن هذه المهمة الجديدة تتطلب دمج الجزيئات واللغة الطبيعية بشكل مباشر. علاوة على ذلك، يمكن اعتبار ذلك مشكلة استرجاع متبادلة مليئة بالتحدي بشكل خاص من خلال النظر في الجزيئات ككلدا بقواعد فريدة من نوعها. نقوم بإنشاء مجموعة بيانات مزخرفة من الجزيئات وأوصاف النص المقابلة، والتي نستخدمها لتعلم مساحة تضمين الدلالة المشتركة المحاذاة لاسترجاعها. نقوم بتمديد هذا لإنشاء نموذج يعتمد على الاهتمام عبر الوسائط للتفسير وإعادة تأهب من خلال تفسير الانتباه كقواعد جمعية. نوظف أيضا نهج فرقة لإدماج بنياتنا المختلفة، والتي تعمل بشكل كبير على تحسين النتائج من 0.372 إلى 0.499 مرين. يفتح هذا النهج الجديد متعدد الوسائط وجهة نظر جديدة حول حل المشكلات في فهم الأدب الكيمياء وتعلم الجهاز الجزيئي.
في المدارس الابتدائية، تستخدم كتب الأطفال، وكذلك في تطبيقات تعلم اللغة الحديثة، واستراتيجيات تعليمية متعددة الوسائط مثل الرسوم التوضيحية للمصطلحات والعبارات لدعم فهم القراءة.أيضا، تشير العديد من الدراسات في علم النفس التعليمي إلى أن دمج المعلومات الع ابطة العابرة ستحسن من فهم القراءة.نحن ندعي أن محولات الحالة متعددة الوسائط، والتي يمكن استخدامها في سياق متعلم لغوي لتحسين القراءة البشرية، ستؤدي بشكل سيئ بسبب البيانات النصية القصيرة والبسيطة نسبيا والتي يتم تدريب تلك النماذج معها.لإثبات فرضياتنا، جمعنا مجموعة بيانات جديدة متعددة الوسائط على أساس البيانات من Wikipedia.في تحليل بيانات متعمقة، نسلط الضوء على الاختلافات بين مجموعة البيانات الخاصة بنا ومجموعات البيانات الشائعة الأخرى.بالإضافة إلى ذلك، نقوم بتقييم العديد من المحولات متعددة الوسائط متعددة الأحوال على استرجاع الصور النصية على مجموعة بياناتنا وتحليل نتائجها الضئيلة، والتي تحقق من مطالباتنا.
تفتح الأسئلة الاستخراجية المفتوحة الإجابة تعمل بشكل جيد على البيانات النصية من خلال استرداد النصوص المرشحة أولا ثم استخراج الإجابة من هؤلاء المرشحين. ومع ذلك، لا يمكن الإجابة على بعض الأسئلة بالنص وحدها ولكنها تتطلب معلومات مخزنة في الجداول. في هذه ا لورقة، نقدم نهج لاستعادة كلا النصين والجداول ذات الصلة بالسؤال من خلال ترميز النصوص والطاولات والأسئلة في مساحة متجه واحدة. تحقيقا لهذه الغاية، نقوم بإنشاء مجموعة بيانات جديدة متعددة الوسائط بناء على مجموعات بيانات النصوص والجدول من العمل ذي الصلة ومقارنة أداء استرجاع مخطط ترميز مختلفة. نجد أن تضمين ناقلات كثيفة نماذج المحولات تتفوق على تضمين متفرق في أربع مجموعات من مجموعات بيانات تقييم. مقارنة نماذج تضمين كثيفة مختلفة، تزيد TRI-Encoders مع ترميز واحد لكل سؤال ونص وجدول أداء استرجاع مقارنة بالتشفيات الثنائية مع ترميز واحد للحصول على سؤال واحد لكل من النص والجداول. نطلق سراح مجموعة بيانات متعددة الوسائط التي تم إنشاؤها حديثا للمجتمع بحيث يمكن استخدامها للتدريب والتقييم.
لقد أثبت العمل الحديث في وكلاء المحادثة المفتوحة على أن التحسينات الكبيرة في الإنسانية وتفضيل المستخدم يمكن تحقيقها عبر التحجيم الضخم في كل من بيانات التدريب المسبق وحجم النموذج (Adiwardana et al.، 2020؛ الأسطوانة وآخرون، 2020). ومع ذلك، إذا كنا نريد بناء عملاء مع قدرات تشبه الإنسان، يجب علينا توسيع نطاق التعامل مع النص فقط. موضوع مهم للغاية هو القدرة على رؤية الصور والتواصل حول ما ينظر إليه. بهدف الحصول على البشر للانخراط في حوار متعدد الوسائط، نحقق في مجمع المكونات من وكلاء حوار الوكالة المفتوحة للحكومة من بين الفنون من نماذج الرؤية الحديثة. نحن ندرس دمج مخططات مختلفة من صور الصور واستراتيجيات التدريب المسبق على نطاق واسع على المجال وضبط النطاق، وتظهر أن طرازنا الأفضل الناتج يفوق النماذج الحالية القوية في حوار متعدد الوسائط أثناء التنفيذ في وقت واحد وكذلك سلفها (النص فقط) (الأسطوانة وآخرون، 2020) في محادثة قائمة على النص. إننا كذلك تحقيق وإدماج مكونات السلامة في نموذجنا النهائي، وإظهار أن هذه الجهود لا تقلل من الأداء النموذجي فيما يتعلق بتفضيل الإنسان.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا