ترغب بنشر مسار تعليمي؟ اضغط هنا

التقييم التفاضلي: تحليل نوعي لسلوك نظام معالجة اللغة الطبيعي بناء على مقاومة البيانات للمعالجة

Differential Evaluation: a Qualitative Analysis of Natural Language Processing System Behavior Based Upon Data Resistance to Processing

337   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

معظم الوقت، عند التعامل مع مهمة معينة لمعالجة اللغة الطبيعية، تتم مقارنة الأنظمة على أساس الإحصاءات العالمية مثل الاستدعاء والدقة ودرجة F1، وما إلى ذلك، بينما توفر هذه الدرجات فكرة عامة عن سلوك هذه الأنظمة، إنهم يتجاهلون جزءا رئيسيا من المعلومات التي يمكن أن تكون مفيدة لتقييم التقدم المحرز والتحديات المتبقية المتميزة: الصعوبة النسبية في حالات الاختبار. لمعالجة هذا القصور، نقدم فكرة التقييم التفاضلي الذي يحدد فعليا التقسيم العملي من الحالات في صناديق أكثر صعوبة تدريجيا من خلال الاستفادة من التنبؤات التي قدمتها مجموعة من الأنظمة. تمكننا مقارنة الأنظمة على طول صناديق الصعوبة هذه أن تنتجنا تحليلا مدققا لأسعارها النسبية، والتي نوضحها على حالتي الاستخدام: مقارنة بين النظم المشاركة في مهمة تصنيف النص متعدد الملصقات (CLF EHENGE 2018 ICD-10 ICD-10 )، ومقارنة النماذج العصبية المدربة للكشف عن الكيانات الطبية الحيوية (مجموعة بيانات علاقات الأمراض الكيميائية الثنائية الطبيوم الكيميائية).



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يدقق هذا البرنامج التعليمي أحدث التقدم التقني في التحليل النحوي ودور بناء الجملة في مهام معالجة اللغة الطبيعية المناسبة (NLP)، حيث يتمثل الترجمة الدلالية في الدورات الدلالية (SRL) والترجمة الآلية (MT) المهام التي لديهاكان دائما مفيدا من أدلة النحوية الإعلامية منذ فترة طويلة، على الرغم من أن التقدم من طرازات التعلم العميق المنتهي في النهاية يظهر نتائج جديدة.في هذا البرنامج التعليمي، سنقدم أولا الخلفية وأحدث التقدم المحرز في التحليل النحوي و SRL / NMT.بعد ذلك، سنلخص الأدلة الرئيسية حول التأثيرات النحوية على هذين المهامين المتعلقين، واستكشاف الأسباب وراء كل من الخلفيات الحسابية واللغوية.
يتغير مجال معالجة اللغة الطبيعية (NLP) بسرعة، مما يتطلب عروض الدورة التدريبية للتكيف مع تلك التغييرات، و NLP ليس فقط لعلماء الكمبيوتر؛إنه مجال يجب أن يكون متاحا لأي شخص لديه خلفية كافية.في هذه الورقة، أشرح كيف يمكن إعداد الطلاب الذين لديهم خلفيات علو م الكمبيوتر وعلوم البيانات جيدا لدورة NLP الشعبة العليا في جامعة ولاية كبيرة.تغطي الدورة نظرية الاحتمالات ونظرية المعلومات، واللطاقات الأولية، والآلة والتعلم العميق، مع محاولة لتحقيق التوازن بين الأفكار والمفاهيم النظرية مع التطبيقات العملية.أشرح أهداف الدورة والمواضيع والواجبات، والتفكير في التعديلات على الدورة خلال السنوات الأربع الماضية، وكذلك ردود الفعل من الطلاب.
على الرغم من كفاءتها المثبتة في المجالات الأخرى، فإن تكبير البيانات أقل شعبية في سياق معالجة اللغة الطبيعية (NLP) بسبب تعقيدها ونتائج محدودة.أظهرت دراسة حديثة (Longpre et al.، 2020) على سبيل المثال أن تعزز بيانات المهمة غير المرغوية تفشل في تعزيز أدا ء المحولات مسبقا حتى في أنظمة البيانات المنخفضة.في هذه الورقة، نحقق في ما إذا كان جدولة التكبير التي يحركها البيانات وإدماج مجموعة أوسع من التحولات يمكن أن تؤدي إلى تحسين الأداء حيث كانت السياسات الثابتة والمحدودة غير ناجحة.تشير نتائجنا إلى أنه، في حين أن هذا النهج يمكن أن يساعد عملية التدريب في بعض الإعدادات، فإن التحسينات غير صحيحة.هذه النتيجة السلبية تهدف إلى مساعدة الباحثين فهم أفضل قيود تكبير البيانات من أجل NLP.
تستكشف هذه المقالة إمكانية معالجة اللغات الطبيعية (NLP) لتمكين نموذج شرطة مركزة وأقل فعالية وأقل من المواجهة التي كانت تستهلك حتى الآن من الموارد لتنفيذ الحجم. الشرطة المنحى للمشاكل (البوب) هي استبدال محتمل، على الأقل جزئيا، بالنسبة للشرطة التقليدية التي تعتمد نهجا تفاعلا، تعتمد اعتمادا كبيرا على نظام العدالة الجنائية. على النقيض من ذلك، يسعى البوب ​​لمنع الجريمة من خلال التلاعب بالظروف الأساسية التي تسمح بالارتكاب الجرائم. يتطلب تحديد هذه الشروط الأساسية فهما مفصلا لأحداث الجريمة - معرفة ضمنية تعقد غالبا من قبل ضباط الشرطة ولكن يمكن أن تكون صعبة للغاية للاستمتاع ببيانات الشرطة المهيكلة. يوجد أحد المصدر المحتمل للنصية في بيانات نصية مجانية غير منظمة تجمعها الشرطة لأغراض التحقيق أو الإدارة. ومع ذلك، فإن وكالات الشرطة لا تحتوي عادة على المهارات أو الموارد لتحليل هذه البيانات على نطاق واسع. في هذه المقالة، نقول أن NLP يقدم القدرة على فتح هذه البيانات غير المنظمة وبالتالي السماح للشرطة بتنفيذ المزيد من مبادرات البوب. ومع ذلك، نحذر أن استخدام نماذج NLP دون معرفة كافية قد يسمح إما بإدخال التحيز داخل البيانات التي تؤدي إلى نتائج غير مواتية.
في هذه الورقة، نقدم دورة جديدة مفتوحة مفتوحة على الإنترنت على معالجة اللغة الطبيعية، وتستهدف الطلاب غير الإنجليزيين.تستمر الدورة 12 أسبوعا، كل أسبوع يتكون من محاضرات وجلسات عملية واعتيادات مسابقة.ثلاثة أسابيع من أصل 12 تليها الاعتمادات الترميز على غر ار Kaggle.حدة الدورة لدينا لخدمة أغراض متعددة: (ط) العائلة الطلاب مع المفاهيم الأساسية والأساليب في NLP، مثل نمذجة اللغة أو تمثيلات الكلمة أو الكلمة، (II) إظهار أن التطورات الحديثة، بما في ذلك النماذج القائمة على المحولات المدربة مسبقا، هيبناء على هذه المفاهيم؛(3) تقديم هياكنا للحصول على معظم التطبيقات الحقيقية الأكثر طلبا، (3) تطوير مهارات عملية لمعالجة النصوص بلغات متعددة.تم إعداد الدورة المسجلة وتسجيلها خلال عام 2020 وحتى الآن تلقت ردود فعل إيجابية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا