ترغب بنشر مسار تعليمي؟ اضغط هنا

اختيار الأدلة باعتبارها مهمة التنبؤ على مستوى الرمز المميز

Evidence Selection as a Token-Level Prediction Task

236   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

في التحقق الآلي المطالبة، نسترجع الأدلة من قاعدة المعرفة لتحديد صحة المطالبة.بشكل حدسي، يلعب استرجاع الأدلة الصحيحة دورا حاسما في هذه العملية.في كثير من الأحيان، يتم تناول اختيار الأدلة بمثابة مهمة تصنيف جملة الزوجية، أي نحن ندرب نموذجا للتنبؤ بكل جملة على حدة ما إذا كان دليلا على المطالبة.في هذا العمل، نحن نغلق محولات مستوى المستندات لاستخراج جميع الأدلة من وثيقة ويكيبيديا في وقت واحد.نظل أن هذا النهج ينفذ أفضل من الأحكام المصنفة للنموذج القابل للمقارنة بشكل فردي على جميع مقاييس اختيار الأدلة ذات الصلة في الحمى.ينتج بناء خط أنابيبنا الكامل على إجراء اختيار الأدلة هذا نتيجة جديدة للحمى، وهو معيار التحقق من المطالبات الشعبية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

استخراج الحقائق والتحقق (الحمى) هي مهمة تم تقديمها مؤخرا تتألف من استرجاع المستندات الفرعية التالية (I)، (II) استعادة الجملة، و (3) التحقق من المطالبة.في هذا العمل، نركز على الترجمة الفرعية لاسترجاع الجملة.على وجه التحديد، نقترح نموذجا يعتمد على المح ولات على الأدلة التي تتفوق على جميع الطرز الأخرى من حيث درجة الحمى باستخدام مجموعة فرعية من مثيلات التدريب.بالإضافة إلى ذلك، نقوم بإجراء دراسة تجريبية كبيرة للحصول على فهم أفضل للمشكلة، بينما تلخص نتائجنا من خلال تقديم تحديات البحث في المستقبل.
غالبا ما تكون نماذج اللغة المدربة مسبقا مسبقا (PLMS) باهظة الثمن بشكل أساسي في الاستدلال، مما يجعلها غير عملية في مختلف تطبيقات العالم الحقيقي المحدودة. لمعالجة هذه المشكلة، نقترح مقاربة تخفيض رمزية ديناميكية لتسريع استنتاج PLMS، والتي تسمى Tr-Bert، والتي يمكن أن تتكيف مرونة عدد الطبقة من كل رمزي في الاستدلال لتجنب الحساب الزائد. خصيصا، تقوم Tr-Bert بتصوير عملية تخفيض الرمز المميز كأداة اختيار رمز تخطيط متعدد الخطوات وتعلم تلقائيا استراتيجية الاختيار عبر التعلم التعزيز. تظهر النتائج التجريبية على العديد من مهام NLP المصب أن Tr-Bert قادرة على تسريع بيرتف بمقدار 2-5 مرات لإرضاء متطلبات الأداء المختلفة. علاوة على ذلك، يمكن ل TR-Bert تحقيق أداء أفضل مع حساب أقل في مجموعة من المهام النصية الطويلة لأن تكييف رقم الطبقة على مستوى الرمز المميز يسرع بشكل كبير عملية انتباه الذات في plms. يمكن الحصول على شفرة المصدر وتفاصيل التجربة لهذه الورقة من https://github.com/thunlp/tr-bert.
تعلق نظام ترجمة لغة الإشارة المتتالية في خرائط أول خريطة توقيع مقاطع فيديو لمعالجة التوضيحية ثم تترجم لمعان اللغات في لغات منطوقة.يركز هذا العمل على مكون الترجمة اللامع في المرحلة الثانية، وهو أمر صعب بسبب ندرة البيانات الموازية المتاحة للجمهور.نحن ن قترب الترجمة اللمعان كمهامة ترجمة آلية منخفضة الموارد والتحقيق في طريقتين شعبيتين لتحسين جودة الترجمة: فرط HyperParameter و Backtranslation.نناقش الإمكانات والمخاطر من هذه الأساليب بناء على تجارب في مجموعة بيانات RWTH-Phoenix-Weather 2014T.
تهدف مهمة اكتشاف الحدث (ED) في استخراج المعلومات إلى الاعتراف وتصنيف كلمات الأحداث في النص. تميز التقدم الأخير نماذج لغوية متقدمة للمحولات المتقدمة (على سبيل المثال، بيرت) كعنصر حاسم في النماذج الحديثة للإد. ومع ذلك، فإن الحد الطول لنصوص الإدخال هو ح اجز لمثل هذه النماذج المحددة لأنها لا تستطيع تشفير سياق مستوي المستند طويل المدى الذي ثبت أنه مفيد لإد إد. لمعالجة هذه المشكلة، نقترح طريقة رواية لنموذج سياق مستوى المستندات لتحديد الجمل ذات الصلة بشكل حيوي في وثيقة التنبؤ بالحدث بالسجن الهدف. سيتم بعد ذلك زيادة الجملة المستهدفة بالجمل المختارة وتستهلكها النماذج اللغوية القائمة على المحولات لتعلم التمثيل المحسن. تحقيقا لهذه الغاية، يتم استخدام خوارزمية التعزيز لتدريب اختيار الجملة ذات الصلة من أجل إد. يتم بعد ذلك تقديم العديد من أنواع المعلومات لتشكيل وظيفة المكافآت لعملية التدريب، بما في ذلك أداء إد، وإشراك الجملة، وعلاقات الخطاب. تجاه تجاربنا الواسعة على مجموعات البيانات القياسية المتعددة تكشف عن فعالية النموذج المقترح، مما يؤدي إلى أداء جديد من الفنادق الجديدة.
في هذه الورقة، نصف نظامنا المستخدمة في مهمة Semeval 2021 5: الكشف عن الأمور السامة.ينتهك نظامنا المقترح من مشكلة مهمة تصنيف رمزية.قمنا بتدريب نموذجنا للعثور على كلمات سامة وتسلسل يمتد إلى التنبؤ باليوفق السام في غضون جملة.نحن نطبات نماذج اللغة المدرب ة مسبقا (PLMS) لتحديد الكلمات السامة.بالنسبة للضبط الدقيق، كدغ طبقة التصنيف أعلى ميزات PLM لكل كلمة لتصنيفها إذا كانت سامة أم لا.يتم تدريب PLMS مسبقا على استخدام أهداف مختلفة وقد يختلف أدائها في مهام المصب.لذلك، قارن أداء بيرت، Electra، روبرتا، XLM-ROBERTA، T5، XLNET، و MPNET لتحديد المواقف السامة في غضون جملة.أفضل نظام أداء لدينا يستخدم روبرتا.أداء جيدا، وتحقيق درجة F1 من 0.6841 وتأمين مرتبة 16 على المتصدرين الرسميين.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا