أظهرت الأساليب الحديثة بناء على نماذج اللغة المدربين مسبقا أداء مشغل قوي على المنطق المنطقي.ومع ذلك، فإنها تعتمد على شروح بيانات باهظة الثمن والتدريب المستهلكة للوقت.وهكذا، نحن نركز على التفكير المنطقي غير المنشأ.نظهر فعالية استخدام إطار عمل مشترك، استنتاج اللغة الطبيعية (NLI)، لحل مهام المنطق المنطقي متنوعة.من خلال الاستفادة من نقل التحويلات من مجموعات بيانات NLI الكبيرة، وحقن المعرفة الحاسمة من مصادر المنطقية مثل 2020 والفهول الذرية، حققت طريقنا أداء غير مدهز للحالة غير المدرجة في مهمتين منطقتي المنطقية: Winowhy و Commonsenseqa.أظهر إجراء مزيد من التحليل فوائد فئات متعددة من المعرفة، ولكن مشاكل حول الكميات والمتضادات لا تزال تحديا.
Recent methods based on pre-trained language models have shown strong supervised performance on commonsense reasoning. However, they rely on expensive data annotation and time-consuming training. Thus, we focus on unsupervised commonsense reasoning. We show the effectiveness of using a common framework, Natural Language Inference (NLI), to solve diverse commonsense reasoning tasks. By leveraging transfer learning from large NLI datasets, and injecting crucial knowledge from commonsense sources such as ATOMIC 2020 and ConceptNet, our method achieved state-of-the-art unsupervised performance on two commonsense reasoning tasks: WinoWhy and CommonsenseQA. Further analysis demonstrated the benefits of multiple categories of knowledge, but problems about quantities and antonyms are still challenging.
المراجع المستخدمة
https://aclanthology.org/
إن الاستدلال اللغوي الطبيعي (NLI) هي مهمة تحديد ما إذا كان جزء من النص ينطوي أو يتناقض أو لا علاقة له بقطعة أخرى من النص.في هذه الورقة، نحقق في كيفية ندف الاستنتاجات المنهجية (أي، العناصر التي يتفق بها الناس على تسمية NLI) بصرف النظر عن عناصر الخلاف
أدت نماذج اللغة المدربة مسبقا إلى مكاسب كبيرة على مجموعة واسعة من مهام معالجة اللغة الطبيعية (NLP)، ولكنها تبين أن قيود لمهام توليد اللغة الطبيعية مع متطلبات عالية الجودة على الإخراج، مثل جيل العمولة والإعلان توليد الكلمات الرئيسية. في هذا العمل، نقد
إن استنتاج المنطقي لفهم وشرح اللغة البشرية هي مشكلة بحثية أساسية في معالجة اللغة الطبيعية. يطرح المشرف على المحادثات الإنسانية تحديا كبيرا لأنه يتطلب التفاهم السياقي والتخطيط والاستدلال والعديد من جوانب المنطق بما في ذلك التفكير السببية والزمان والعم
يحقق نماذج اللغة التعلم المستندة عميقا (DL) أداء عال في مختلف المعايير لاستدلال اللغة الطبيعية (NLI).وفي هذا الوقت، يتلقى النهج الرمزية ل NLI اهتماما أقل.كلا النهجين (الرمزي و DL) لديهم مزاياهم وموضعاتهم.ومع ذلك، حاليا، لا توجد طريقة تجمع بينها في نظ
تدوين المعرفة المنطقية في الآلات هو هدف طويل الأطول من الذكاء الاصطناعي. في الآونة الأخيرة، تم إحراز تقدم كبير نحو هذا الهدف مع تقنيات بناء قاعدة المعرفة التلقائية (KB). ومع ذلك، فإن هذه التقنيات تركز في المقام الأول على اكتساب بيانات KB الإيجابية (T