إن استنتاج المنطقي لفهم وشرح اللغة البشرية هي مشكلة بحثية أساسية في معالجة اللغة الطبيعية. يطرح المشرف على المحادثات الإنسانية تحديا كبيرا لأنه يتطلب التفاهم السياقي والتخطيط والاستدلال والعديد من جوانب المنطق بما في ذلك التفكير السببية والزمان والعموم. في هذا العمل، نقدم عصير التفاح - مجموعة بيانات مفيدة يدويا تحتوي على تفسيرات حوار دولي في شكل ثلاثة توائم في ثلاثة أضعاف تستنتج المعرفة الصريحة باستخدام استنتاج المناشد السياقي. يمكن أن يؤدي استخراج التفسيرات الغنية من المحادثات إلى تحسين العديد من التطبيقات المصب. يتم تصنيف ثلاثة توائم مشروح حسب نوع المعرفة المنطقية الحالية (على سبيل المثال، السببية، الشرطية، الزمنية). لقد أنشأنا ثلاث مهام مختلفة مكيفة على مجموعة البيانات المشروحة: الاستدلال اللغوي الطبيعي على مستوى الحوار، واستخراج تمتد، واختيار سبان متعدد الخيارات. النتائج الأساسية التي تم الحصول عليها مع النماذج القائمة على المحولات تكشف أن المهام صعبة، مما يمهد الطريق للبحث في المستقبل الواعدة. تتوفر DataSet وتطبيقات الأساس علنا في https://github.com/declare-lab/cider.
Commonsense inference to understand and explain human language is a fundamental research problem in natural language processing. Explaining human conversations poses a great challenge as it requires contextual understanding, planning, inference, and several aspects of reasoning including causal, temporal, and commonsense reasoning. In this work, we introduce CIDER -- a manually curated dataset that contains dyadic dialogue explanations in the form of implicit and explicit knowledge triplets inferred using contextual commonsense inference. Extracting such rich explanations from conversations can be conducive to improving several downstream applications. The annotated triplets are categorized by the type of commonsense knowledge present (e.g., causal, conditional, temporal). We set up three different tasks conditioned on the annotated dataset: Dialogue-level Natural Language Inference, Span Extraction, and Multi-choice Span Selection. Baseline results obtained with transformer-based models reveal that the tasks are difficult, paving the way for promising future research. The dataset and the baseline implementations are publicly available at https://github.com/declare-lab/CIDER.
المراجع المستخدمة
https://aclanthology.org/
يستخدم البشر منطق المنطقي (CSR) ضمنيا لإنتاج ردود طبيعية ومتماسكة في المحادثات. تهدف إلى إغلاق الفجوة بين نماذج جيل الاستجابة الحالية (RG) قدرات الاتصالات البشرية، نريد أن نفهم لماذا تستجيب نماذج RG أثناء قيامهم بتحقيق فهم نموذج RG للمنطق المنطقي الذ
تعلم نماذج اللغة المدربة مسبقا تحيزات ضارة اجتماعيا من كورسا التدريب الخاصة بهم، وقد تكرر هذه التحيزات عند استخدامها للجيل.ندرس التحيزات الجنسانية المرتبطة بطل الرواية في القصص الناتجة النموذجية.قد يتم التعبير عن هذه التحيزات إما صراحة (لا تستطيع الم
أظهرت الأساليب الحديثة بناء على نماذج اللغة المدربين مسبقا أداء مشغل قوي على المنطق المنطقي.ومع ذلك، فإنها تعتمد على شروح بيانات باهظة الثمن والتدريب المستهلكة للوقت.وهكذا، نحن نركز على التفكير المنطقي غير المنشأ.نظهر فعالية استخدام إطار عمل مشترك، ا
يركز البحث في مجال المنطق الحالي على تطوير النماذج التي تستخدم معرفة المنطقية للإجابة على أسئلة متعددة الخيارات. ومع ذلك، قد لا تكون النظم المصممة للإجابة على أسئلة متعددة الخيارات مفيدة في التطبيقات التي لا توفر قائمة صغيرة من إجابات المرشحين للاختي
منطق العموم الزمني هي مهمة صعبة لأنها تتطلب المعرفة الزمنية عادة غير صريحة في النص.في هذا العمل، نقترح نموذج فرقة لسبب المنظمات الزمنية.يعتمد نموذجنا على تمثيلات سياقية مدربة مسبقا من نماذج اللغة القائمة على المحولات (IE، Bert)، وعلى مجموعة متنوعة من