ترغب بنشر مسار تعليمي؟ اضغط هنا

MTAG: الرسم البياني للانتباه مشروط من أجل تسلسل اللغة البشرية غير المحددة

MTAG: Modal-Temporal Attention Graph for Unaligned Human Multimodal Language Sequences

307   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

التواصل البشري متعدد الوسائط في الطبيعة؛ من خلال طرائق متعددة مثل تعبيرات اللغة والصوت والوجه، يتم التعبير عن الآراء والعواطف. تظهر البيانات في هذا المجال التفاعلات المعقدة متعددة العلاقات والزمنية. التعلم من هذه البيانات هو مشكلة بحثية تحديا أساسيا. في هذه الورقة، نقترح الرسم البياني الاهتمام الأزمني (MTAG). MTAG هو نموذج عصبي مقاوم للرسمية يوفر إطارا مناسبا لتحليل البيانات المتسلسلة متعددة الوسائط. نقدم أولا إجراءات لتحويل بيانات التسلسل غير المعقدة متعددة الوسائط إلى رسم بياني مع العقد والحواف غير المتجانسة التي تلتقط التفاعلات الغنية عبر الطرائق وعبر الوقت. ثم، تم تصميم عملية رسم بياني رواية، تسمى MTAG FOUSION، إلى جانب تقنية تشذيب ديناميكية وقراءة، لمعالجة الرسوم البيانية الوظيفة الزمنية هذه بكفاءة والتقاط التفاعلات المختلفة. من خلال تعلم التركيز فقط على التفاعلات المهمة داخل الرسم البياني، تحقق MTAG أداء حديثة على تحليل المعنويات متعددة الوسائط ومعايير التعرف على العاطفة، مع الاستفادة من المعلمات النموذجية أقل بكثير.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تقدم هذه الورقة أول دراسة حول استخدام نماذج اللغة المدربة مسبقا على نطاق واسع للجيل الآلي من الرسم البياني الصخم على مستوى الحدث للحصول على مستند. على الرغم من النجاح الهائل لأساليب ما قبل التدريب العصبي في مهام NLP، لم يتم استكشاف إمكاناتها للمنطق ا لزمني على الرسوم البيانية في الأحداث بما فيه الكفاية. جزء من السبب هو صعوبة في الحصول على شركة تدريبية كبيرة مع أحداث مشروح بين الإنسان والروابط الزمنية. نحن نتطلع إلى هذا التحدي باستخدام أدوات IE / NLP الحالية لتوليد كمية كبيرة تلقائيا (89،000) من أزواج المستند المستندات المنتجة للنظام، واقتراح صياغة رواية لمشكلة جيل الرسم البياني للسياق كقوة تعيين تسلسل إلى تسلسل. تمكننا هذه الاستراتيجيات من الاستفادة من النماذج اللغوية التي تم تدريبها مسبقا على بيانات التدريب التي يسببها النظام المهمة لتوليد الرسم البياني. تظهر تجاربنا أن نهجنا فعال للغاية في توليد رسوم بيانية صحيحة هيكليا وذات رأسيا. علاوة على ذلك، يوضح التقييم على Corpus تحديا يدويا عن طريق اليد، أن أسلوبنا تتفوق على أقرب طريقة موجودة من خلال هامش كبير على عدة مقاييس. نعرض أيضا تطبيقا نهرما لنهجنا من خلال تكييفه للإجابة على الأسئلة الزمنية المفتوحة في إعداد فهم القراءة.
يتطلب فهم النص السردي التقاط الدوافع والأهداف والدول الذهنية.تقترح هذه الورقة رسم بياني سرد قائم على الكيان (ENG) لنموذج الدول الداخلية من الشخصيات في القصة.نحن النموذج الصريح كيانات، وتفاعلاتهم والسياق الذي تظهر فيه، وتعلموا تمثيلات غنية لهم.نقوم بت جربة أهداف مختلفة من المهام المتكيفة مسبقا، والتدريب داخل المجال، والاستدلال الرمزي لالتقاط التبعيات بين القرارات المختلفة في مساحة الإنتاج.نقوم بتقييم نموذجنا على مهام فهم سردية: التنبؤ بالحالات العقلية للشخصية، والوفاء بالرغبة، وإجراء تحليل نوعي.
تمت دراسة Graph Basic Knowledge (SKG) (SKGE) بشكل مكثف في السنوات الماضية.في الآونة الأخيرة، ظهرت شركة الرسم البياني للمعرفة (TKG) (TKGE).في هذه الورقة، نقترح إطار عمل تضمين الحقائق الزمنية العودية (RTFE) لإجراء عمليات زراعة النماذج إلى TKGS وتعزيز أ داء نماذج TKGE الحالية لإكمال TKG.تختلف عن العمل السابق الذي يتجاهل استمرارية دول TKG في التطور الزمني، نتعامل مع تسلسل الرسوم البيانية كسلسلة ماركوف، والتي تحولات من الدولة السابقة إلى الحالة التالية.RTFE يأخذ Skge لتهيئة embedings of tkg.ثم تعقب Strefly State Tremition من TKG عن طريق تمرير المعلمات / ميزات محدثة بين الطوابع الزمنية.على وجه التحديد، في كل زمني، نقيب انتقال الدولة باعتباره عملية تحديث التدرج.نظرا لأن RTFE يتعلم كل طابع زمني متكرر، فيمكنه العبور بشكل طبيعي إلى الطوابع الزمنية المستقبلية.تجارب في خمس مجموعات بيانات TKG تظهر فعالية RTFE.
نقترح هندسة محول الرسم البياني المتكرر للرسوم البيانية التلقائي (Rngtr) من أجل تحسين الرسوم البيانية التعسفية من خلال التطبيق العسكري لمحول الرسم البياني غير التلقائي إلى الرسم البياني وتطبيقه على تحليل التبعية النحوية.نوضح قوة وفعالية Rngtr على العد يد من شركات التبعية، باستخدام نموذج التقييم المدرب مسبقا مع بيرت.نقدم أيضا محولات محول النحوية (Sytr)، وهي محلل غير متكرر مشابهة لنموذج التقييم الخاص بنا.يمكن Rngtr تحسين دقة مجموعة متنوعة من المحللين الأوليين في 13 لغة من التبعيات الشاملة TreeBanks والإنجليزية والصينية Benn Treebanks، والجوربوس الألماني Conll2009، وحتى تحسين النتائج الجديدة على النتائج الجديدة التي حققتها Systr، بشكل كبيرتحسين أحدث حديثة لجميع الشركات التي تم اختبارها.
تحتاج الجيل القادم من أنظمة المحادثة AI إلى: (1) لغة العملية تدريجيا، يجب أن تكون الرمز المميز أكثر استجابة وتمكين التعامل مع ظواض المحادثة مثل توقف مؤقت وإعادة التشغيل والتصحيحات الذاتية؛ (2) السبب السماح بشكل تدريجي بالمعنى الذي سيتم إنشاؤه بعد ما يقال؛ (3) أن تكون شفافة ويمكن التحكم فيها، مما يسمح للمصممين وكذلك النظام نفسه بوضع أسباب بسهولة لسلوك معين والخياط لمجموعات مستخدمين معينة، أو المجالات. في هذه الورقة القصيرة، نقدم العمل الأولي المستمر يجمع بين بناء الجملة الديناميكي (DS) - إطار Grammar التدريجي والدلي - مع إطار وصف الموارد (RDF). هذا يمهد الطريق لإنشاء المحللين الدلاليين التدريجيين الذين ينتجون تدريجيا الرسوم البيانية الدلالية RDF كصحة تتكشف في الوقت الفعلي. نحن أيضا الخطوط العريضة كيف يمكن دمج المحلل المحلل بمحرك التفكير تدريجي من خلال RDF. نقول أن DS-RDF Hybrid يرضي Desiderata المذكورة أعلاه، مما أسفر عن البنية التحتية الدلالية التي يمكن استخدامها لبناء مستجيب، في الوقت الفعلي، AI محادثة محادثة مفسورة يمكن تخصيصها بسرعة لتوفير مجموعات مستخدمين محددة مثل الأشخاص المصابين بالخرف.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا