ترغب بنشر مسار تعليمي؟ اضغط هنا

إعادة النظر في ترجمة آلة متعددة المجالات

Revisiting Multi-Domain Machine Translation

244   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

عند بناء أنظمة الترجمة الآلات، يحتاج المرء في كثير من الأحيان إلى الاستفادة القصوى من مجموعات غير متجانسة من البيانات الموازية في التدريب، والتعامل مع المدخلات بقوة من المجالات غير المتوقعة في الاختبار.جذبت هذا السيناريو متعدد المجالات الكثير من العمل الحديث الذي يقع تحت المظلة العامة لتعلم النقل.في هذه الدراسة، نشجع الترجمة متعددة المجالات، بهدف صياغة الدوافع لتطوير هذه الأنظمة والتوقعات المرتبطة فيما يتعلق بالأداء.تبين تجاربنا مع عينة كبيرة من أنظمة المجال متعددة أن معظم هذه التوقعات تلتقي بالكاد وتشير إلى أن هناك حاجة إلى مزيد من العمل لتحليل السلوك الحالي لأنظمة المجالات المتعددة وجعلها تمسك بوعودها بالكامل.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تعلم الترجمة الآلية العصبية متعددة اللغات (MNMT) ترجمة أزواج متعددة اللغات بنموذج واحد، يحتمل أن يحسن كل من الدقة وكفاءة الذاكرة للنماذج المنتشرة. ومع ذلك، فإن عدم اختلال البيانات الثقيلة بين اللغات يعوق النموذج من الأداء بشكل موحد عبر أزواج اللغة. ف ي هذه الورقة، نقترح هدفا تعليميا جديدا ل MNMT بناء على التحسين القوي التويضي، مما يقلل من الخسارة المتوقعة الأسوأ في مجموعة أزواج اللغة. نوضح كذلك كيفية تحسين هذا الهدف من الناحية العملية للترجمة الكبيرة باستخدام مخطط أفضل استجابة مزخرف، وهو فعاليتان فعالة وتتحمل تكلفة حسابية إضافية ضئيلة مقارنة بقليل المخاطر التجريبية القياسية. نقوم بإجراء تجارب مكثفة على ثلاث مجموعات من اللغات من مجموعة بيانات وتظهر أن طريقتنا تتفوق باستمرار على أساليب خطية قوية من حيث المتوسط ​​والأداء لكل لغة تحت كلا من إعدادات الترجمة متعددة إلى واحدة وواحدة متعددة.
تحتاج أنظمة الإنتاج NMT عادة إلى خدمة مجالات المتخصصة التي لا تغطيها كوربيا كبيرة ومتاحة بسهولة بشكل مناسب.ونتيجة لذلك، غالبا ما يكون الممارسون نماذج غرضا عاما نماذج عامة على كل من المجالات التي يلبيها منظمةها.ومع ذلك، يمكن أن يصبح عدد المجالات كبيرا ، مما يتجمع مع عدد اللغات التي تحتاج إلى خدمة يمكن أن تؤدي إلى وضع أسطول غير قابل للحل من النماذج والمحافظة عليها.نقترح علامات متعددة الأبعاد، وهي طريقة لضبط نموذج NMT واحد على عدة مجالات في وقت واحد، وبالتالي تقليل تكاليف التطوير والصيانة بشكل كبير.نحن ندير تجارب حيث يقارن نموذج واحد MDT بشكل إيجابي لمجموعة من نماذج SOTA متخصصة، حتى عند تقييمها على المجال كانت تلك الأساس التي تم ضبطها بشكل جيد.إلى جانب بلو، نبلغ عن نتائج التقييم البشري.تعيش نماذج MDT الآن في Booking.com، مما يؤدي إلى تشغيل محرك MT الذي يخدم ملايين الترجمات يوميا في أكثر من 40 لغة مختلفة.
وجدت خوارزميات التدرج السياسي اعتماد واسع في NLP، لكنها أصبحت مؤخرا عرضة للنقد، مما يشك في ملاءمتها ل NMT.تشوشين وآخرون.(2020) حدد نقاط ضعف متعددة والشك في تحديد نجاحهم من خلال شكل توزيعات الإخراج بدلا من المكافأة.في هذه الورقة، نلتأكيد هذه المطالبات ودراسةها تحت مجموعة أوسع من التكوينات.تكشف تجاربنا على التكيف في المجال والمجال عبر المجال أهمية الاستكشاف والمكافآت، وتوفير الأدلة المضادة التجريبية لهذه المطالبات.
غالبا ما يتم الحصول على بيانات التدريب للترجمة الآلية (MT) من العديد من الشركات الكبيرة التي هي متعددة الأوجه في الطبيعة، على سبيل المثالتحتوي على محتويات من مجالات متعددة أو مستويات مختلفة من الجودة أو التعقيد.بطبيعة الحال، لا تحدث هذه الجوانب بتردد متساو ولا هي نفسها نفسها بنفس القدر لسيناريو الاختبار في متناول اليد.في هذا العمل، نقترح تحسين هذا التوازن بشكل مشترك مع معلمات نموذج MT لتخفيف مطوري النظام من تصميم الجدول اليدوي.يتم تدريب عصري متعدد المسلح على الاختيار ديناميكيا بين الجوانب بطريقة مفيدة لنظام MT.نقيمها على ثلاثة تطبيقات مختلفة متعددة الأوجه: موازنة البيانات النسبية والبيانات التدريبية الطبيعية، أو البيانات من مجالات متعددة أو أزواج متعددة اللغات.نجد أن تعلم الفرعيد يؤدي إلى أنظمة MT تنافسية عبر المهام، ويقدم تحليلنا رؤى في استراتيجياته المستفادة ومجموعات البيانات الأساسية.
الإجابة السؤالية (QA) هي واحدة من أكثر المهام التحدي والآثار في معالجة اللغة الطبيعية.ومع ذلك، ركزت معظم الأبحاث في ضمان الجودة على النطاق المفتوح أو الأبدية في حين أن معظم تطبيقات العالم الواقعي تعامل مع مجالات أو لغات محددة.في هذا البرنامج التعليمي ، نحاول سد هذه الفجوة.أولا، نقدم معايير قياسية في مجال QA متعدد اللغات متعددة اللغات.في كل من السيناريوهين، نناقش النهج الحديثة التي تحقق أداء مثير للإعجاب، تتراوح من التعلم من تحويل صفرية إلى التدريب خارج الصندوق مع أنظمة QA المجال المفتوحة.أخيرا، سنقدم مشاكل بحثية مفتوحة أن أجندة الأبحاث الجديدة تشكل مثل التعلم متعدد المهام، وتعلم التحويل عبر اللغات، وتكييف المجال وتدريب نماذج لغة متعددة اللغات المدربة مسبقا مسبقا.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا