تعد أنظمة معالجة اللغة الطبيعية (NLP) في قلب العديد من أنظمة صنع القرار الآلي الحرجة التي تجعل توصيات حاسمة حول عالمنا في المستقبل.تم دراسة التحيز بين الجنسين في NLP جيدا باللغة الإنجليزية، لكنها كانت أقل دراستها بلغات أخرى.في هذه الورقة، تضم فريقا بينهم متحدثون 9 لغات - الصينية والإسبانية والإنجليزية والعربية والألمانية والفرنسية والفرصي والأوردو وولف - تقارير وتحليل قياسات التحيز بين الجنسين في ولاية ويكيبيديا كورسيا لهذه اللغات 9 لغات 9 لغات 9 لغات 9 لغات 9 لغات هذه.نقوم بتطوير ملحقات لحسابات متر راي حساسية على مستوى المهنة والجنس على مستوى كوربوس المصممة في الأصل للغة الإنجليزية وتطبيقها على 8 لغات أخرى، بما في ذلك اللغات التي لديها أسماء جنسانية من النوع الاجتماعي بما في ذلك كلمات المهنة الأنثوية والمذكر والمحايدة المختلفة.نناقش العمل في المستقبل من شأنه أن يستفيد بشكل كبير من منظور اللغويات الحاسوبية.
Natural Language Processing (NLP) systems are at the heart of many critical automated decision-making systems making crucial recommendations about our future world. Gender bias in NLP has been well studied in English, but has been less studied in other languages. In this paper, a team including speakers of 9 languages - Chinese, Spanish, English, Arabic, German, French, Farsi, Urdu, and Wolof - reports and analyzes measurements of gender bias in the Wikipedia corpora for these 9 languages. We develop extensions to profession-level and corpus-level gender bias metric calculations originally designed for English and apply them to 8 other languages, including languages that have grammatically gendered nouns including different feminine, masculine, and neuter profession words. We discuss future work that would benefit immensely from a computational linguistics perspective.
المراجع المستخدمة
https://aclanthology.org/
أصبحت الأساليب الإحصائية لمعالجة اللغات الطبيعية مهيمنة في السنوات الأخيرة. يوفر هذا الكتاب تغطية واسعة وعميقة للأسس الرياضية واللغوية لهذه الطرائق، بالإضافة إلى ذلك, يزوّد الكتاب شرح مفصل للأساليب الإحصائية ، مما يسمح للطلاب والباحثين ببناء تطبيقاتهم الخاصة.
مع نشر نماذج اللغة بشكل متزايد في العالم الحقيقي، من الضروري معالجة مسألة نزاهة مخرجاتها. غالبا ما تعتمد كلمة تضمين تمثيلات نماذج اللغة هذه ضمنيا ارتباطات غير مرغوب فيها تشكل تحيزا اجتماعيا داخل النموذج. تطرح طبيعة اللغات بين الجنسين مثل الهندية مشكل
يمثل عدم المساواة بين الجنسين خسارة كبيرة في الإمكانات البشرية وإدامة ثقافة العنف، وارتفاع الفجوات في مجال الأجور بين الجنسين، وعدم وجود تمثيل المرأة في المناصب العليا والقيادية. يتم استخدام التطبيقات المدعومة من الذكاء الاصطناعي (AI) بشكل متزايد في
تستكشف هذه المقالة إمكانية معالجة اللغات الطبيعية (NLP) لتمكين نموذج شرطة مركزة وأقل فعالية وأقل من المواجهة التي كانت تستهلك حتى الآن من الموارد لتنفيذ الحجم. الشرطة المنحى للمشاكل (البوب) هي استبدال محتمل، على الأقل جزئيا، بالنسبة للشرطة التقليدية
تشير الدراسات الحديثة إلى أن العديد من أنظمة NLP حساسة وعرضة للاضطرابات الصغيرة للمدخلات ولا تعميمها بشكل جيد عبر مجموعات البيانات المختلفة. هذا الافتقار إلى المتانة ينطبق على استخدام أنظمة NLP في تطبيقات العالم الحقيقي. يهدف هذا البرنامج التعليمي إل