ترغب بنشر مسار تعليمي؟ اضغط هنا

التحيز بين الجنسين في معالجة اللغة الطبيعية عبر اللغات البشرية

Gender Bias in Natural Language Processing Across Human Languages

365   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تعد أنظمة معالجة اللغة الطبيعية (NLP) في قلب العديد من أنظمة صنع القرار الآلي الحرجة التي تجعل توصيات حاسمة حول عالمنا في المستقبل.تم دراسة التحيز بين الجنسين في NLP جيدا باللغة الإنجليزية، لكنها كانت أقل دراستها بلغات أخرى.في هذه الورقة، تضم فريقا بينهم متحدثون 9 لغات - الصينية والإسبانية والإنجليزية والعربية والألمانية والفرنسية والفرصي والأوردو وولف - تقارير وتحليل قياسات التحيز بين الجنسين في ولاية ويكيبيديا كورسيا لهذه اللغات 9 لغات 9 لغات 9 لغات 9 لغات 9 لغات هذه.نقوم بتطوير ملحقات لحسابات متر راي حساسية على مستوى المهنة والجنس على مستوى كوربوس المصممة في الأصل للغة الإنجليزية وتطبيقها على 8 لغات أخرى، بما في ذلك اللغات التي لديها أسماء جنسانية من النوع الاجتماعي بما في ذلك كلمات المهنة الأنثوية والمذكر والمحايدة المختلفة.نناقش العمل في المستقبل من شأنه أن يستفيد بشكل كبير من منظور اللغويات الحاسوبية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

3675 - MIT press 1999 كتاب
أصبحت الأساليب الإحصائية لمعالجة اللغات الطبيعية مهيمنة في السنوات الأخيرة. يوفر هذا الكتاب تغطية واسعة وعميقة للأسس الرياضية واللغوية لهذه الطرائق، بالإضافة إلى ذلك, يزوّد الكتاب شرح مفصل للأساليب الإحصائية ، مما يسمح للطلاب والباحثين ببناء تطبيقاتهم الخاصة.
مع نشر نماذج اللغة بشكل متزايد في العالم الحقيقي، من الضروري معالجة مسألة نزاهة مخرجاتها. غالبا ما تعتمد كلمة تضمين تمثيلات نماذج اللغة هذه ضمنيا ارتباطات غير مرغوب فيها تشكل تحيزا اجتماعيا داخل النموذج. تطرح طبيعة اللغات بين الجنسين مثل الهندية مشكل ة إضافية في تقدير التحيز والتخفيف من التحيز، بسبب التغيير في شكل الكلمات في الجملة، بناء على جنس الموضوع. بالإضافة إلى ذلك، هناك أعمال متناثرة تتم في مجال أنظمة القياس والدولي لغات Instan. في عملنا، نحاول تقييم وتحديد التحيز بين الجنسين داخل نظام الترجمة الآلية الهندية-الإنجليزية. نقوم بتنفيذ إصدار تعديل من متري TGBI الموجود على أساس الاعتبارات النحوية له الهندية. قارننا أيضا وتتناقض مع قياسات التحيز الناتجة عن مقاييس متعددة للمظلات المدربة مسبقا وتلك التي تعلمتها نموذج الترجمة الآلي لدينا.
يمثل عدم المساواة بين الجنسين خسارة كبيرة في الإمكانات البشرية وإدامة ثقافة العنف، وارتفاع الفجوات في مجال الأجور بين الجنسين، وعدم وجود تمثيل المرأة في المناصب العليا والقيادية. يتم استخدام التطبيقات المدعومة من الذكاء الاصطناعي (AI) بشكل متزايد في العالم الحقيقي لتوفير قرارات نقدية حول من الذي سيتم توظيفه، ومنح قرضا، مقبول في الكلية، إلخ. ومع ذلك، فإن الركائز الرئيسية ل AI ومعالجة اللغة الطبيعية ( تم عرض NLP) وتعلم الجهاز (ML) تعكس وحتى تضخيم التحيزات والقوالب النمطية للجنسين، والتي تورثها أساسا من بيانات التدريب التاريخية. في محاولة لتسهيل تحديد الهوية والتخفيف من التحيز بين الجنسين في نص اللغة الإنجليزية، نطور تصنيفا شاملا للتصنيفات التي تعتمد على أنواع المنحات بين الجنسين التالية: الضمائر العامة، الجنسية، التحيز المهني، التحيز الاستبعاد، والدليل. ونحن نقدم أيضا نظرة عامة على نحو من القاعدة من خلال التحيز بين الجنسين، من أصلها المجتمعي إلى اللغة إلى اللغة. أخيرا، نربط الآثار المجتمعية على التحيز بين الجنسين من النوع (الأنواع) المقابلة في التصنيف المقترح. الدافع الأساسي لعملنا هو المساعدة في تمكين المجتمع الفني لتحديد والتخفيف من التحيزات ذات الصلة من التدريب كورسا لتحسين الإنصاف في أنظمة NLP.
تستكشف هذه المقالة إمكانية معالجة اللغات الطبيعية (NLP) لتمكين نموذج شرطة مركزة وأقل فعالية وأقل من المواجهة التي كانت تستهلك حتى الآن من الموارد لتنفيذ الحجم. الشرطة المنحى للمشاكل (البوب) هي استبدال محتمل، على الأقل جزئيا، بالنسبة للشرطة التقليدية التي تعتمد نهجا تفاعلا، تعتمد اعتمادا كبيرا على نظام العدالة الجنائية. على النقيض من ذلك، يسعى البوب ​​لمنع الجريمة من خلال التلاعب بالظروف الأساسية التي تسمح بالارتكاب الجرائم. يتطلب تحديد هذه الشروط الأساسية فهما مفصلا لأحداث الجريمة - معرفة ضمنية تعقد غالبا من قبل ضباط الشرطة ولكن يمكن أن تكون صعبة للغاية للاستمتاع ببيانات الشرطة المهيكلة. يوجد أحد المصدر المحتمل للنصية في بيانات نصية مجانية غير منظمة تجمعها الشرطة لأغراض التحقيق أو الإدارة. ومع ذلك، فإن وكالات الشرطة لا تحتوي عادة على المهارات أو الموارد لتحليل هذه البيانات على نطاق واسع. في هذه المقالة، نقول أن NLP يقدم القدرة على فتح هذه البيانات غير المنظمة وبالتالي السماح للشرطة بتنفيذ المزيد من مبادرات البوب. ومع ذلك، نحذر أن استخدام نماذج NLP دون معرفة كافية قد يسمح إما بإدخال التحيز داخل البيانات التي تؤدي إلى نتائج غير مواتية.
تشير الدراسات الحديثة إلى أن العديد من أنظمة NLP حساسة وعرضة للاضطرابات الصغيرة للمدخلات ولا تعميمها بشكل جيد عبر مجموعات البيانات المختلفة. هذا الافتقار إلى المتانة ينطبق على استخدام أنظمة NLP في تطبيقات العالم الحقيقي. يهدف هذا البرنامج التعليمي إل ى زيادة الوعي بالشواغل العملية حول متانة NLP. يستهدف الباحثون والممارسون الخماسيون الذين يهتمون ببناء أنظمة NLP موثوقة. على وجه الخصوص، سنراجع الدراسات الحديثة حول تحليل ضعف أنظمة NLP عند مواجهة المدخلات والبيانات المعديين مع تحول التوزيع. سوف نقدم للجمهور بهدف شامل من 1) كيفية استخدام أمثلة الخصومة لفحص ضعف نماذج NLP وتسهيل تصحيح الأخطاء؛ 2) كيفية تعزيز متانة نماذج NLP الحالية والدفاع ضد المدخلات الخصومة؛ 3) كيف يؤثر النظر في المتانة على تطبيقات NLP العالمية الحقيقية المستخدمة في حياتنا اليومية. سنختتم البرنامج التعليمي عن طريق تحديد اتجاهات البحث في المستقبل في هذا المجال.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا