توضح هذه الورقة نظام Anvita-1.0 MT، Architeted for Survision To Wath2021 Multiindicmt Task من فريق Mcairt، حيث شارك الفريق في 20 اتجاهات ترجمة: الإنجليزية → Werc و Indic → الإنجليزية؛ تشدد مجموعة تشل من 10 لغات هندية. نظام Anvita-1.0 MT يتكون من نماذج NMT متعددة اللغات واحد للغة الإنجليزية → اتجاهات MEDISTION وغيرها من الإرشادات وغيرها من الإرشادات الإنجليزية مع فك التشفير المشترك، والتموين 10 أزواج اللغة والعشرون اتجاهي الترجمة. بنيت النماذج الأساسية بناء على بنية المحولات وتدريبها على Multiindicmt Wat 2021 Corpora وزيادة الترجمة والترجمة الترجمة والترجمة الخاصة بتزوير البيانات الانتقائية، وفرقة نموذجية لتحسين التعميم. بالإضافة إلى ذلك، تم تقطير Multiindicmt Wat 2021 Corpora باستخدام سلسلة من عمليات التصفية قبل طرح التدريب. anvita-1.0 حقق أعلى درجة AM-FM النتيجة للغة الإنجليزية → البنغالية، 2nd للغة الإنجليزية → التاميل و 3 للإنجليزية → الهندية، البنغالية → الإنجليزية الاتجاهات في مجموعة الاختبار الرسمية. بشكل عام، فإن الأداء الذي حققه Anvita للتشج ← اتجاهات إنجليزية أفضل نسبيا من أن الإنجليزي → اتجاهات MEDIAL لجميع أزواج اللغة 10 عند تقييمها باستخدام Bleu and Ribes، على الرغم من أن الاتجاه نفسه غير مريح باستمرار عند تقييم AM-FM نفذت. بالمقارنة مع Bleu، فإن RIBES و AM-FM تستند إلى أنفيتا أفضل نسبيا بين جميع المشاركين المهام.
This paper describes ANVITA-1.0 MT system, architected for submission to WAT2021 MultiIndicMT shared task by mcairt team, where the team participated in 20 translation directions: English→Indic and Indic→English; Indic set comprised of 10 Indian languages. ANVITA-1.0 MT system comprised of two multi-lingual NMT models one for the English→Indic directions and other for the Indic→English directions with shared encoder-decoder, catering 10 language pairs and twenty translation directions. The base models were built based on Transformer architecture and trained over MultiIndicMT WAT 2021 corpora and further employed back translation and transliteration for selective data augmentation, and model ensemble for better generalization. Additionally, MultiIndicMT WAT 2021 corpora was distilled using a series of filtering operations before putting up for training. ANVITA-1.0 achieved highest AM-FM score for English→Bengali, 2nd for English→Tamil and 3rd for English→Hindi, Bengali→English directions on official test set. In general, performance achieved by ANVITA for the Indic→English directions are relatively better than that of English→Indic directions for all the 10 language pairs when evaluated using BLEU and RIBES, although the same trend is not observed consistently when AM-FM based evaluation was carried out. As compared to BLEU, RIBES and AM-FM based scoring placed ANVITA relatively better among all the task participants.
المراجع المستخدمة
https://aclanthology.org/
تقدم هذه الورقة تقديم مختبر Bering إلى المهام المشتركة للورشة الثامنة حول الترجمة الآسيوية (WAT 2021) على JPC2 و SAP.شاركنا في جميع المهام على JPC2 ومهام مجال تكنولوجيا المعلومات على NICT-SAP.نهجنا لجميع المهام يركز بشكل أساسي على بناء أنظمة NMT في ك
في هذه الورقة، نحن نصف مجموعتنا لمهمة مشاركة اللغة المشتركة للغة 2021. لقد بنينا 3 أنظمة في كل اتجاه لزوج لغة التاميل.تحدد هذه الورقة تجارب مع مخططات التوت المختلفة لتدريب النماذج الإحصائية.نبلغ أيضا عن تكوين الأنظمة والنتائج المقدمة التي ينتجها من قبلها.
الترجمة الآلية العصبية (NMT) هي تكنولوجيا ترجمة آلية سائدة في الوقت الحاضر بسبب مرونةها التدريبية المتنقلة المحيرة.ومع ذلك، لا يزال NMT يكافح من أجل الترجمة بشكل صحيح في إعدادات الموارد المنخفضة خصيصا على أزواج اللغة البعيدة.طريقة واحدة للتغلب على ذل
في هذه الورقة، نصف تقاريرنا للمهمة المشتركة ل Loresmt مؤتمر قمة MT 2021.بنينا أنظمة ترجمة إحصائية في كل اتجاه للإنجليزية ⇐⇒ زوج لغة الماراثي.تحدد هذه الورقة تجارب خط الأساس الأولية مع مخططات التزخم المختلفة لتدريب النماذج.باستخدام مخطط التزامن الأمثل
في هذه الورقة، نقوم بصف أن نقوم بتقديم طلباتنا إلى WAT-2021 (Nakazawa et al.، 2021) لمهمة اللغة الإنجليزية إلى ميانمار (بورمي).فريقنا، ID: YCC-MT1 ''، ركز على جلب معرفة حرفية إلى وحدة فك الترميز دون تغيير النموذج.لقد استخرجنا يدويا أزواج الكلمة / عبا