ترغب بنشر مسار تعليمي؟ اضغط هنا

نظام الترجمة الآلي A3-108 لمهمة مشتركة لترجمة اللغة المشتركة 2021

A3-108 Machine Translation System for Similar Language Translation Shared Task 2021

478   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

في هذه الورقة، نحن نصف مجموعتنا لمهمة مشاركة اللغة المشتركة للغة 2021. لقد بنينا 3 أنظمة في كل اتجاه لزوج لغة التاميل.تحدد هذه الورقة تجارب مع مخططات التوت المختلفة لتدريب النماذج الإحصائية.نبلغ أيضا عن تكوين الأنظمة والنتائج المقدمة التي ينتجها من قبلها.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

في هذه الورقة، نصف تقاريرنا للمهمة المشتركة ل Loresmt مؤتمر قمة MT 2021.بنينا أنظمة ترجمة إحصائية في كل اتجاه للإنجليزية ⇐⇒ زوج لغة الماراثي.تحدد هذه الورقة تجارب خط الأساس الأولية مع مخططات التزخم المختلفة لتدريب النماذج.باستخدام مخطط التزامن الأمثل ، نقوم بإنشاء بيانات اصطناعية ومزيد من البيانات المعززة لمجموعة البيانات لإنشاء المزيد من النماذج الإحصائية.أيضا، نقوم بإعادة ترتيب اللغة الإنجليزية لتتناسب مع بناء جملة الماراثي لتعزيز مجموعة أخرى من النماذج الأساسية والبيانات باستخدام مخططات التكامل المختلفة.نبلغ عن تكوين الأنظمة والنتائج المقدمة التي تنتجها.
توضح هذه الورقة نظام Anvita-1.0 MT، Architeted for Survision To Wath2021 Multiindicmt Task من فريق Mcairt، حيث شارك الفريق في 20 اتجاهات ترجمة: الإنجليزية → Werc و Indic → الإنجليزية؛ تشدد مجموعة تشل من 10 لغات هندية. نظام Anvita-1.0 MT يتكون من نماذ ج NMT متعددة اللغات واحد للغة الإنجليزية → اتجاهات MEDISTION وغيرها من الإرشادات وغيرها من الإرشادات الإنجليزية مع فك التشفير المشترك، والتموين 10 أزواج اللغة والعشرون اتجاهي الترجمة. بنيت النماذج الأساسية بناء على بنية المحولات وتدريبها على Multiindicmt Wat 2021 Corpora وزيادة الترجمة والترجمة الترجمة والترجمة الخاصة بتزوير البيانات الانتقائية، وفرقة نموذجية لتحسين التعميم. بالإضافة إلى ذلك، تم تقطير Multiindicmt Wat 2021 Corpora باستخدام سلسلة من عمليات التصفية قبل طرح التدريب. anvita-1.0 حقق أعلى درجة AM-FM النتيجة للغة الإنجليزية → البنغالية، 2nd للغة الإنجليزية → التاميل و 3 للإنجليزية → الهندية، البنغالية → الإنجليزية الاتجاهات في مجموعة الاختبار الرسمية. بشكل عام، فإن الأداء الذي حققه Anvita للتشج ← اتجاهات إنجليزية أفضل نسبيا من أن الإنجليزي → اتجاهات MEDIAL لجميع أزواج اللغة 10 عند تقييمها باستخدام Bleu and Ribes، على الرغم من أن الاتجاه نفسه غير مريح باستمرار عند تقييم AM-FM نفذت. بالمقارنة مع Bleu، فإن RIBES و AM-FM تستند إلى أنفيتا أفضل نسبيا بين جميع المشاركين المهام.
تصف هذه الورقة تقديم LIT-NLP LAB إلى المهمة المشتركة للترجمة الثلاثي WMT-21 Triangular.لا يسمح للمشاركين باستخدام البيانات الأخرى واتجاه الترجمة لهذه المهمة هو الروسية إلى الصينية.في هذه المهمة، نستخدم المحول كنموذج الأساس لدينا، ودمج العديد من التقن يات لتعزيز أداء الأساس، بما في ذلك تصفية البيانات، واختيار البيانات، والضبط الناعم، والتحرير بعد التحرير.علاوة على ذلك، للاستفادة من موارد اللغة الإنجليزية، مثل البيانات الروسية / الإنجليزية والصينية / الإنجليزية الموازية، يتم إنشاء مثلث العلاقة من خلال أنظمة الترجمة الآلية العصبية متعددة اللغات.نتيجة لذلك، يحقق تقديمنا نقاطا بلو 21.9 في الروسية إلى الصينية.
في هذا العمل، تم تطوير وتقييم وتقييم أنظمة الترجمة الآلية العصبيةين كجزء من BILIRECTIONAL TAMIL-TELUGU Transmation Language Translation Transke Subtask في WMT21. تم استخدام مجموعة أدوات OpenNMT-PY لإنشاء النماذج النماذج الخاصة بالأنظمة السريعة، والتي تتابع النماذج التي تم تدريبها على مجموعات البيانات التدريبية التي تحتوي على Corpus الموازي وأخيرا تم تقييم النماذج على مجموعات بيانات Dev المقدمة كجزء من المهمة. تم تدريب كل من الأنظمة على محطة DGX مع 4 -V100 GPUs. أول نظام NMT في هذا العمل هو طراز ترميز تشفير من 6 طبقة محول، تدرب على 100000 خطوة تدريبية، مما يشبه تكوينه الجديد الذي يوفره OpenNMT-PY وهذا يستخدم لإنشاء نموذج للحصول على ترجمة ثنائية الاتجاه. يحتوي نظام NMT الثاني على نماذج ترجمة أحادية الاتجاه مع نفس التكوين كنظام أول كأول، مع إضافة ترميز زوج البايت البايت (BPE) لتخشيص الكلمات الفرعية من خلال طراز MultiBPEMB المدرب مسبقا. بناء على مقاييس تقييم DEV DataSet لكل من النظم، فإن النظام الأول I.E. لقد تم تقديم نموذج محول الفانيليا كنظام أساسي. نظرا لعدم وجود تحسينات في المقاييس أثناء تدريب النظام الثاني مع BPE، فقد تم تقديمه كأنظمة مضادة للتناقض.
تصف هذه الورقة أنظمة Tencent Translation ذات المهمة المشتركة WMT21. نشارك في مهمة ترجمة الأخبار على ثلاث أزواج لغة: الصينية-الإنجليزية والإنجليزية والصينية والألمانية والإنجليزية. يتم بناء أنظمتنا على نماذج محولات مختلفة مع تقنيات جديدة تتكيف من عملن ا البحثي الأخير. أولا، نجمع بين طرق تكبير البيانات المختلفة بما في ذلك الترجمة المرجودة والترجمة الأمامية والتدريب من اليمين إلى اليسار لتوسيع بيانات التدريب. نستخدم أيضا تحيز التغطية اللغوية وتجديد البيانات ونهج أخذ العينات المستندة إلى عدم اليقين لتحديد بيانات ذات صلة بالمحتوى وعالية الجودة من كوربورا متوازية ومونولجة كبيرة. نتوقع أن يتم ضبطه بشكل جيد في المجال، ونقترح أيضا نماذج واحدة المحبوثة نموذج واحد "" لنموذج خصائص نموذجية لأنواع الأخبار المختلفة عند مراحل الركود الدقيقة وفك التشفير. علاوة على ذلك، نستخدم خوارزمية الفرقة القائمة على الجشع وطريقة الفرقة المتناقلة لتعزيز أنظمتنا. بناء على نجاحنا في آخر WMT، فإننا أعملنا باستمرار تقنيات متقدمة مثل التدريب الدفاعي الكبير واختيار البيانات وتصفية البيانات. أخيرا، يحقق نظامنا الصيني والإنجليزي المقيد 33.4 درجة بلو حساسة للحالة، وهو الأعلى بين جميع التقديمات. يتم تصنيف نظام اللغة الإنجليزية الألمانية في المركز الثاني وفقا لذلك.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا